亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A survey of vision-based condition monitoring methods using deep learning: A synthetic fiber rope perspective

计算机科学 灵活性(工程) 人工智能 深度学习 机器视觉 人机交互 机器学习 统计 数学
作者
Anju Rani,Daniel Ortíz-Arroyo,Petar Durdevic
出处
期刊:Engineering Applications of Artificial Intelligence [Elsevier]
卷期号:136: 108921-108921 被引量:5
标识
DOI:10.1016/j.engappai.2024.108921
摘要

Computer vision technology has attracted significant interest in the condition monitoring (CM) community due to its potential to automate visual inspection and analysis of structures and components. By facilitating the processing and interpretation of visual information, including images and video data, computer vision holds promise for CM applications. However, it is essential to distinguish computer vision from non-contact CM techniques regarding their underlying principles and methods. While computer vision enables non-contact, remote monitoring, and condition assessment with minimal disruption to daily operations, it is distinct from non-contact CM techniques, which utilize various sensors to assess the condition of assets without physical contact or interference. Building upon the potential of computer vision technology, this survey paper presents a comprehensive overview of the current state-of-the-art CM methods based on computer vision and deep learning (DL) techniques, focusing on their application in monitoring synthetic fiber ropes (SFRs). SFRs are a viable alternative to steel wire ropes for underwater equipment and cranes that handle heavy loads. This is due to their high resistance to frictional wear, high tensile strength, lightweight, and flexibility. New materials, technologies, and processes for CM are being developed to meet the growing demand for SFRs. The paper explores ongoing research in applications that monitor the wear and aging of materials, as well as estimate their remaining useful life. The survey briefly discusses the traditional non-destructive testing and machine learning (ML) methods for CM applications. More importantly, DL-based methods, including supervised, unsupervised, semi-supervised, and self-supervised methods, are discussed in detail, together with the use of deep generative models and the recently developed diffusion models in the generation of synthetic datasets. Furthermore, the paper addresses the difficulties present in DL-based CM applications, including the scarcity of labeled data and the complexity and variety of the models used. The article ends by discussing the benefits of employing DL-based visual methods to understand SFR degradation processes, particularly in monitoring and maintenance.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
单薄水星完成签到,获得积分10
11秒前
34秒前
54秒前
wwww发布了新的文献求助10
59秒前
量子星尘发布了新的文献求助10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
shhoing应助科研通管家采纳,获得10
1分钟前
脑洞疼应助科研通管家采纳,获得10
1分钟前
gexzygg应助科研通管家采纳,获得10
1分钟前
1分钟前
哲别发布了新的文献求助10
2分钟前
手术刀完成签到 ,获得积分10
2分钟前
Panther完成签到,获得积分10
2分钟前
2分钟前
GGGrigor完成签到,获得积分0
2分钟前
木昆完成签到 ,获得积分10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
shhoing应助科研通管家采纳,获得10
3分钟前
情怀应助科研通管家采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
4分钟前
bkagyin应助火星人采纳,获得10
4分钟前
4分钟前
火星人发布了新的文献求助10
4分钟前
5分钟前
5分钟前
缥缈雯发布了新的文献求助10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
CodeCraft应助池雨采纳,获得10
5分钟前
gexzygg应助缥缈雯采纳,获得10
5分钟前
5分钟前
5分钟前
tyr001完成签到,获得积分10
6分钟前
akiyy发布了新的文献求助10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549249
求助须知:如何正确求助?哪些是违规求助? 4634593
关于积分的说明 14634874
捐赠科研通 4576049
什么是DOI,文献DOI怎么找? 2509476
邀请新用户注册赠送积分活动 1485332
关于科研通互助平台的介绍 1456512