Bubble collapse patterns recognition and flow field prediction based on machine learning

物理 气泡 机械 流量(数学) 领域(数学) 数学 纯数学
作者
Hao Chen,Shaofei Ren,Shi-Min Li,Shuai Zhang,Guo-Fei Zhang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:36 (8) 被引量:5
标识
DOI:10.1063/5.0218482
摘要

A machine learning method is proposed to predict the collapse patterns and flow field state of underwater explosion bubbles subjected to the vertical sidewall and free surface, which can overcome the limitations of high costs of traditional experimental tests and long computation times of numerical simulations. The dataset was obtained by the boundary element method, including the cases of the bubble with different buoyancy parameters at different distances from the free surface and vertical sidewall. Due to the strong geometric nonlinearity of the bubble influenced by boundary, three classification models are adopted to identify the collapse patterns of bubbles, which are support vector machines, K nearest neighbor, and decision tree. Meanwhile, an ensemble learning (EL) model based on the three classification models is adopted to enhance the prediction accuracy. Furthermore, three regression models, which are deep neural network (DNN), extreme learning machine (ELM), and random forest (RF), were adopted and compared to predict flow field information around the bubble. The results show that EL exhibits better robustness to the distribution and proportion of samples when identifying collapse patterns. Meanwhile, compared with ELM and RF, DNN demonstrates stronger performance in capturing nonlinear relationships, especially in regions where the bubble curvature changes abruptly. Moreover, a learning rate decay strategy is proposed to effectively suppress the phenomenon of loss oscillation in the training process of DNN based on adaptive activation functions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
风之旅完成签到,获得积分10
刚刚
冷傲的xu发布了新的文献求助10
1秒前
量子星尘发布了新的文献求助10
1秒前
sober发布了新的文献求助30
1秒前
2秒前
桐桐应助wyp采纳,获得10
3秒前
栗子完成签到 ,获得积分10
4秒前
雨下整夜完成签到,获得积分10
4秒前
申生氏发布了新的文献求助10
4秒前
老福贵儿应助冷傲的xu采纳,获得10
5秒前
宁宁完成签到,获得积分10
5秒前
Joker_Li完成签到,获得积分10
5秒前
哈哈哈哈完成签到,获得积分10
7秒前
rmbsLHC发布了新的文献求助10
7秒前
丰富的乌冬面完成签到,获得积分10
7秒前
科研通AI6应助qiongqiong采纳,获得10
8秒前
9秒前
9秒前
酷波er应助OO采纳,获得10
12秒前
14秒前
韦昌格完成签到,获得积分20
14秒前
华仔应助pp采纳,获得10
15秒前
15秒前
liuyang完成签到,获得积分10
15秒前
坚定路人完成签到,获得积分10
15秒前
16秒前
OO完成签到,获得积分10
16秒前
王0你萌完成签到 ,获得积分10
18秒前
ATOM发布了新的文献求助10
18秒前
Hello应助rmbsLHC采纳,获得30
18秒前
ma化疼没木完成签到,获得积分10
19秒前
irisjlj完成签到,获得积分10
20秒前
20秒前
jam发布了新的文献求助10
20秒前
ieZH发布了新的文献求助10
20秒前
LiDaYang完成签到,获得积分10
21秒前
21秒前
zdy完成签到 ,获得积分10
22秒前
Gracezzz完成签到 ,获得积分10
25秒前
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Mentoring for Wellbeing in Schools 1200
List of 1,091 Public Pension Profiles by Region 1061
Binary Alloy Phase Diagrams, 2nd Edition 600
Atlas of Liver Pathology: A Pattern-Based Approach 500
A Technologist’s Guide to Performing Sleep Studies 500
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5495208
求助须知:如何正确求助?哪些是违规求助? 4592899
关于积分的说明 14439172
捐赠科研通 4525764
什么是DOI,文献DOI怎么找? 2479666
邀请新用户注册赠送积分活动 1464489
关于科研通互助平台的介绍 1437348