Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma from Multi-sequence Magnetic Resonance Imaging based on Deep Fusion Representation Learning

磁共振成像 肝细胞癌 序列(生物学) 图像融合 代表(政治) 人工智能 融合 放射科 计算机科学 医学 图像(数学) 内科学 化学 政治学 哲学 政治 法学 生物化学 语言学
作者
Haishu Ma,Lili Wang,Lingzhi Sun,Shinan Wang,Lulu Lu,Chaoyang Zhang,Yong He,Yuan Zhu
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-13 被引量:1
标识
DOI:10.1109/jbhi.2024.3451331
摘要

Recent studies have identified microvascular invasion (MVI) as the most vital independent biomarker associated with early tumor recurrence. With advancements in medical technology, several computational methods have been developed to predict preoperative MVI using diverse medical images. These existing methods rely on human experience, attribute selection or clinical trial testing, which is often time-consuming and labor-intensive. Leveraging the advantages of deep learning, this study presents a novel end-to-end algorithm for predicting MVI prior to surgery. We devised a series of data preprocessing strategies to fully extract multi-view features from the data while preserving peritumoral information. Notably, a new multi-branch deep fused feature algorithm based on ResNet (DFFResNet) is introduced, which combines Magnetic Resonance Images (MRI) from different sequences to enhance information complementarity and integration. We conducted prediction experiments on a dataset from the Radiology Department of the First Hospital of Lanzhou University, comprising 117 individuals and seven MRI sequences. The model was trained on 80% of the data using 10-fold cross-validation, and the remaining 20% were used for testing. This evaluation was processed in two cases: CROI, containing samples with a complete region of interest (ROI), and PROI, containing samples with a partial ROI region. The robustness results from repeated experiments at both image and patient levels demonstrate the superior performance and improved generalization of the proposed method compared to alternative models. Our approach yields highly competitive prediction results even when the ROI region outline is incomplete, offering a novel and effective multi-sequence fused strategy for predicting preoperative MVI.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
yang完成签到,获得积分10
5秒前
5秒前
完美世界应助linmo采纳,获得10
6秒前
6秒前
YY发布了新的文献求助10
6秒前
结实的以莲完成签到,获得积分10
7秒前
liyi2022完成签到,获得积分10
7秒前
优美从菡发布了新的文献求助10
8秒前
博修发布了新的文献求助10
10秒前
12秒前
sci发布了新的文献求助10
12秒前
大气萤发布了新的文献求助10
12秒前
vv发布了新的文献求助10
13秒前
hh发布了新的文献求助30
13秒前
13秒前
13秒前
SciGPT应助YY采纳,获得10
14秒前
小二郎应助博修采纳,获得10
16秒前
kersen发布了新的文献求助10
16秒前
lll应助rjhgh采纳,获得10
16秒前
Yingzi完成签到,获得积分10
17秒前
KK完成签到,获得积分10
18秒前
18秒前
小马甲应助其实采纳,获得10
19秒前
小吴发布了新的文献求助10
20秒前
黄奥龙完成签到,获得积分10
21秒前
风之子完成签到,获得积分10
22秒前
25秒前
26秒前
甜蜜的楷瑞应助aa121599采纳,获得10
26秒前
yookia应助aa121599采纳,获得10
26秒前
Marilyn发布了新的文献求助10
26秒前
28秒前
完美世界应助糟糕的雪糕采纳,获得10
29秒前
年年发布了新的文献求助10
31秒前
华仔应助lingkai采纳,获得10
31秒前
踏实迎梦发布了新的文献求助10
33秒前
ding应助沉默碧琴采纳,获得10
33秒前
高分求助中
【请各位用户详细阅读此贴后再求助】科研通的精品贴汇总(请勿应助) 10000
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Research on Disturbance Rejection Control Algorithm for Aerial Operation Robots 1000
Global Eyelash Assessment scale (GEA) 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4046092
求助须知:如何正确求助?哪些是违规求助? 3583836
关于积分的说明 11390716
捐赠科研通 3311111
什么是DOI,文献DOI怎么找? 1822153
邀请新用户注册赠送积分活动 894354
科研通“疑难数据库(出版商)”最低求助积分说明 816171