已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Behavioral marker-based predictive modeling of functional status for older adults with subjective cognitive decline and mild cognitive impairment: Study protocol

痴呆 活动记录 社会心理的 认知功能衰退 心理干预 认知 心理学 老年学 人口 临床心理学 医学 精神科 疾病 病理 环境卫生 失眠症
作者
Bada Kang,Jinkyoung Ma,I. S. Jeong,Seolah Yoon,Jennifer Ivy Kim,Seok‐Jae Heo,Sarah Soyeon Oh
出处
期刊:Digital health [SAGE Publishing]
卷期号:10
标识
DOI:10.1177/20552076241269555
摘要

Objective This study describes a research protocol for a behavioral marker-based predictive model that examines the functional status of older adults with subjective cognitive decline and mild cognitive impairment. Methods A total of 130 older adults aged ≥65 years with subjective cognitive decline or mild cognitive impairment will be recruited from the Dementia Relief Centers or the Community Service Centers. Data on behavioral and psychosocial markers (e.g. physical activity, mobility, sleep/wake patterns, social interaction, and mild behavioral impairment) will be collected using passive wearable actigraphy, in-person questionnaires, and smartphone-based ecological momentary assessments. Two follow-up assessments will be performed at 12 and 24 months after baseline. Mixed-effect machine learning models: MErf, MEgbm, MEmod, and MEctree, and standard machine learning models without random effects [random forest, gradient boosting machine] will be employed in our analyses to predict functional status over time. Results The results of this study will be fundamental for developing tailored digital interventions that apply deep learning techniques to behavioral data to predict, identify, and aid in the management of functional decline in older adults with subjective cognitive decline and mild cognitive impairment. These older adults are considered the optimal target population for preventive interventions and will benefit from such tailored strategies. Conclusions Our study will contribute to the development of self-care interventions that utilize behavioral data and machine learning techniques to provide automated analyses of the functional decline of older adults who are at risk for dementia.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
快乐的不二法门完成签到 ,获得积分10
刚刚
可爱的函函应助chris采纳,获得10
3秒前
andrele发布了新的文献求助10
4秒前
充电宝应助王鑫采纳,获得10
4秒前
6秒前
7秒前
8秒前
10秒前
一路有你完成签到 ,获得积分10
10秒前
Charlie发布了新的文献求助10
12秒前
12秒前
12秒前
norman发布了新的文献求助10
13秒前
14秒前
CodeCraft应助好奇宝宝采纳,获得10
14秒前
14秒前
SYLH应助科研通管家采纳,获得10
14秒前
小蘑菇应助科研通管家采纳,获得10
14秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
丘比特应助科研通管家采纳,获得10
15秒前
上官若男应助科研通管家采纳,获得10
15秒前
Ava应助科研通管家采纳,获得10
15秒前
爆米花应助科研通管家采纳,获得30
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
传奇3应助科研通管家采纳,获得10
15秒前
科研通AI5应助科研通管家采纳,获得10
15秒前
乐乐应助wang5945采纳,获得10
17秒前
17秒前
冰魂应助norman采纳,获得20
18秒前
乐乐应助YOGA1115采纳,获得10
19秒前
chris发布了新的文献求助10
20秒前
WSQ2130应助Afra采纳,获得10
20秒前
20秒前
21秒前
22秒前
23秒前
YC发布了新的文献求助30
25秒前
Owen应助风扇转的好快采纳,获得30
25秒前
文焜发布了新的文献求助10
26秒前
TTT0530完成签到,获得积分10
26秒前
高分求助中
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Nucleophilic substitution in azasydnone-modified dinitroanisoles 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840587
求助须知:如何正确求助?哪些是违规求助? 3382618
关于积分的说明 10525349
捐赠科研通 3102300
什么是DOI,文献DOI怎么找? 1708729
邀请新用户注册赠送积分活动 822662
科研通“疑难数据库(出版商)”最低求助积分说明 773465