细胞外基质
细胞生物学
癌症研究
体外
肿瘤微环境
化学
体内
转移
基质(化学分析)
生物
癌症
肿瘤细胞
生物化学
生物技术
色谱法
遗传学
作者
Ricardo Cruz‐Acuña,Secunda W. Kariuki,Katsura Sugiura,Spyros Karaiskos,Eleanor M. Plaster,Claudia Loebel,Gizem Efe,Tatiana A. Karakasheva,Joel Gabre,Jianhua Hu,Jason A. Burdick,Anil K. Rustgi
摘要
Increased extracellular matrix (ECM) stiffness has been implicated in esophageal adenocarcinoma (EAC) progression, metastasis, and resistance to therapy. However, the underlying pro-tumorigenic pathways are yet to be defined. Additional work is needed to develop physiologically relevant in vitro 3D culture models that better recapitulate the human tumor microenvironment and can be used to dissect the contributions of matrix stiffness to EAC pathogenesis. Here, we describe a modular, tumor ECM-mimetic hydrogel platform with tunable mechanical properties, defined presentation of cell-adhesive ligands, and protease-dependent degradation that supports robust in vitro growth and expansion of patient-derived EAC 3D organoids (EAC PDOs). Hydrogel mechanical properties control EAC PDO formation, growth, proliferation, and activation of tumor-associated pathways that elicit stem-like properties in the cancer cells, as highlighted through in vitro and in vivo environments. We also demonstrate that the engineered hydrogel serves as a platform to identify potential therapeutic targets to disrupt the contribution of pro-tumorigenic matrix mechanics in EAC. Together, these studies show that an engineered PDO culture platform can be used to elucidate underlying matrix-mediated mechanisms of EAC, and inform the development of therapeutics that target ECM stiffness in EAC.
科研通智能强力驱动
Strongly Powered by AbleSci AI