Recent progress in thermoelectric MXene-based structures versus other 2D materials

MXenes公司 热电效应 热电材料 材料科学 纳米技术 工程物理 工程类 物理 热力学
作者
Subrahmanyam Bandaru,Agnieszka Jastrzębska,Magdalena Birowska
出处
期刊:Applied Materials Today [Elsevier BV]
卷期号:34: 101902-101902 被引量:19
标识
DOI:10.1016/j.apmt.2023.101902
摘要

Thermoelectricity is a next-generation solution for efficient waste heat management. Although various thermoelectric materials exist, there is still a lot of scope for advancement, especially in room temperature applications. Recently, two-dimensional (2D) materials, including MXenes, showed promise as thermoelectric materials. On the other hand, MXenes generally exhibit metallic behavior that can hinder thermoelectric performance. Nevertheless, the variety of MXene's chemical composition and surface functionalization facilitate the research path based on energy band engineering, carrier concentration, and mobility. Multiple strategies to enhance the thermoelectric properties of layered MXenes materials, including structural modifications, defects, band gap engineering, etc. have been comprehensively demonstrated. In addition, advanced structural engineering such as nanostructuring MXenes with materials of different dimensions, creating van der Waals heterostructures, alloying, and utilizing MXenes as nanoinclusions or nanocomposites is presented. The thermoelectric efficiency of MXenes over the landscape of other 2D and conventional thermoelectric materials has been systematically compared. Meanwhile, a future approach has been proposed to enhance the thermoelectric properties of novel members of the flatland, MBenes exhibiting an incredible diversity of structures and crystal symmetries. Finally, potential applications in thermoelectrics and future prospects of MXenes are discussed. This article provides a timely and unique review of MXenes' advantages and limitations that have never been so well understood and established. This creates a comfort zone for rational tailoring of their structure-property-performance relationship, which is crucial concerning the thermoelectric performance, widely covered in this review.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hyl发布了新的文献求助10
1秒前
直率的费曼完成签到,获得积分10
1秒前
x5kyi完成签到,获得积分10
1秒前
CipherSage应助ACKMAN采纳,获得10
1秒前
彭于晏应助水门采纳,获得10
2秒前
4秒前
6秒前
武广敏发布了新的文献求助10
9秒前
su完成签到 ,获得积分10
9秒前
123发布了新的文献求助10
9秒前
10秒前
酷波er应助Jian采纳,获得10
11秒前
wllllll完成签到,获得积分10
11秒前
13秒前
haha完成签到 ,获得积分10
13秒前
科研通AI5应助许安采纳,获得10
14秒前
muyassar发布了新的文献求助50
15秒前
诚心代芙完成签到 ,获得积分10
16秒前
xcxcxcily完成签到,获得积分10
16秒前
科研通AI5应助hbrl采纳,获得10
18秒前
WangRuize完成签到,获得积分10
19秒前
20秒前
orixero应助于瑞熙采纳,获得10
21秒前
Serena完成签到,获得积分10
22秒前
22秒前
科研小白完成签到,获得积分10
23秒前
潘啊潘完成签到 ,获得积分10
23秒前
风之子完成签到,获得积分10
26秒前
刘五十七完成签到 ,获得积分10
27秒前
嗯qq发布了新的文献求助10
27秒前
小小aa16发布了新的文献求助50
28秒前
卡卡西应助科研通管家采纳,获得10
37秒前
feaxi应助科研通管家采纳,获得30
37秒前
zho应助科研通管家采纳,获得10
37秒前
赘婿应助科研通管家采纳,获得10
37秒前
赘婿应助科研通管家采纳,获得10
37秒前
卡卡西应助科研通管家采纳,获得10
37秒前
烟花应助科研通管家采纳,获得10
38秒前
科研通AI2S应助科研通管家采纳,获得10
38秒前
华仔应助科研通管家采纳,获得10
38秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3823579
求助须知:如何正确求助?哪些是违规求助? 3365946
关于积分的说明 10438454
捐赠科研通 3085109
什么是DOI,文献DOI怎么找? 1697172
邀请新用户注册赠送积分活动 816235
科研通“疑难数据库(出版商)”最低求助积分说明 769462