Fast calculation for approximations in Dominance-based Rough Set Approach using Dual Information Granule

粗集 计算机科学 计算 基于优势度的粗糙集方法 π的近似 传递关系 算法 计算复杂性理论 粒度计算 数学优化 理论计算机科学 数学 数据挖掘 应用数学 组合数学
作者
Jie Zhao,Di Wu,Jiunn-Jong Wu,Eric Wing Kuen See-To,Faliang Huang
出处
期刊:Applied Soft Computing [Elsevier BV]
卷期号:149: 110962-110962
标识
DOI:10.1016/j.asoc.2023.110962
摘要

The Dominance-based Rough Set Approach (DRSA) is an extension of RST, which utilizes the dominance relation in attributes. However, traditional DRSA-based methods do not exploit the properties and logical structure in depth, which causes a high computational cost in lower and upper approximations. Besides, these methods are object-based, leading to repeated calculations from identical instances, and they involve numerous redundant computations to approximate different decisions. Therefore, we propose a novel approach, called DIGAC (Dual Information Granule-based Approximation Calculation), to improve DRSA by replacing the object-based calculation with the granule-based calculation. It effectively reduces the time complexity by constructing a granule-based ordered decision system. Additionally, this novel approach uses three types of Dual Information Granules (DIGs) to avoid repeated calculations from identical samples. In the process of lower and upper approximation, we leverage their transitivity to put forward a Distributed Storage-based Lower Approximation Calculation (DSLAC) strategy and a Query-based Upper Approximation Calculation (QUAC) strategy to eliminate redundant computations. Importantly, we theoretically prove that the DIG-based approach extensively reduces the time complexity of the approximations and obtains the same approximations as the original counterpart. Our approach is investigated on 23 datasets, and the experimental results show that it outperforms existing algorithms in terms of efficiency and stability, especially for large-scale and high-dimensional datasets, where the average decrease in execution time is up to 99%.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
咿呀咿呀哟完成签到,获得积分10
刚刚
沉默的西牛完成签到,获得积分20
1秒前
貔貅完成签到,获得积分10
1秒前
左孤容完成签到 ,获得积分10
1秒前
xshzhou完成签到,获得积分10
2秒前
Evan_zhu完成签到,获得积分10
2秒前
jjjjchou完成签到,获得积分10
3秒前
babyhead完成签到,获得积分10
4秒前
陈晚拧完成签到 ,获得积分10
4秒前
朴实雨竹完成签到,获得积分10
4秒前
Jabowoo完成签到,获得积分10
5秒前
橙子完成签到,获得积分10
6秒前
7秒前
Hrentiken完成签到,获得积分10
8秒前
木子完成签到 ,获得积分10
8秒前
陶醉世德完成签到,获得积分10
9秒前
最好的完成签到,获得积分10
9秒前
laihama完成签到,获得积分10
9秒前
罚克由尔完成签到,获得积分10
9秒前
和平港湾完成签到,获得积分10
10秒前
hansJAMA发布了新的文献求助10
10秒前
昵称完成签到,获得积分10
11秒前
慈祥的煎蛋完成签到,获得积分10
11秒前
神勇的砖头完成签到,获得积分10
11秒前
沉静的代芹完成签到,获得积分10
11秒前
123完成签到,获得积分20
12秒前
内向的跳跳糖完成签到,获得积分10
12秒前
如初完成签到,获得积分10
12秒前
小桶爸爸完成签到,获得积分10
12秒前
乱世完成签到,获得积分10
13秒前
睡个好觉完成签到,获得积分10
13秒前
开心的芒果完成签到,获得积分10
13秒前
含蓄文博完成签到 ,获得积分10
14秒前
ANPURIL完成签到,获得积分10
14秒前
15秒前
机灵夏云完成签到,获得积分10
15秒前
sx发布了新的文献求助10
16秒前
今后应助沉默的西牛采纳,获得10
16秒前
卉卉完成签到,获得积分10
17秒前
17秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
Images that translate 500
引进保护装置的分析评价八七年国外进口线路等保护运行情况介绍 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3840982
求助须知:如何正确求助?哪些是违规求助? 3382969
关于积分的说明 10527271
捐赠科研通 3102843
什么是DOI,文献DOI怎么找? 1709028
邀请新用户注册赠送积分活动 822850
科研通“疑难数据库(出版商)”最低求助积分说明 773638