Application of artificial intelligence and machine learning in early detection of adverse drug reactions (ADRs) and drug-induced toxicity

药品 毒性 药物反应 药物毒性 医学 更安全的 药物发现 药物不良反应 药物警戒 药理学 计算机科学 生物信息学 生物 内科学 计算机安全
作者
Siyun Yang,Supratik Kar
标识
DOI:10.1016/j.aichem.2023.100011
摘要

Adverse drug reactions (ADRs) and drug-induced toxicity are major challenges in drug discovery, threatening patient safety and dramatically increasing healthcare expenditures. Since ADRs and toxicity are not as visible as infectious diseases, the potential consequences are considerable. Early detection of ADRs and drug-induced toxicity is an essential indicator of a drug's viability and safety profile. The introduction of artificial intelligence (AI) and machine learning (ML) approaches has resulted in a paradigm shift in the field of early ADR and toxicity detection. The application of these modern computational methods allows for the rapid, thorough, and precise prediction of probable ADRs and toxicity even before the drug’s practical synthesis as well as preclinical and clinical trials, resulting in more efficient and safer medications with a lesser chance of drug’s withdrawal. This present review offers an in-depth examination of the role of AI and ML in the early detection of ADRs and toxicity, incorporating a wide range of methodologies ranging from data mining to deep learning followed by a list of important databases, modeling algorithms, and software that could be used in modeling and predicting a series of ADRs and toxicity. This review also provides a complete reference to what has been performed and what might be accomplished in the field of AI and ML-based early identification of ADRs and drug-induced toxicity. By shedding light on the capabilities of these technologies, it highlights their enormous potential for revolutionizing drug discovery and improving patient safety.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
平常的半凡应助已秃采纳,获得10
2秒前
3秒前
许珩发布了新的文献求助10
3秒前
sky完成签到,获得积分10
4秒前
阔达语儿完成签到,获得积分10
4秒前
爆米花应助trump采纳,获得10
4秒前
英俊白莲发布了新的文献求助10
5秒前
矛头蝮应助代代采纳,获得40
7秒前
8秒前
8秒前
LuoX发布了新的文献求助10
8秒前
11秒前
lllxxx完成签到,获得积分10
11秒前
12秒前
华仔应助雨眠采纳,获得10
12秒前
13秒前
Orange应助已秃采纳,获得10
13秒前
wulei发布了新的文献求助10
13秒前
lagom完成签到,获得积分10
13秒前
13秒前
ED应助科研通管家采纳,获得10
15秒前
搜集达人应助科研通管家采纳,获得10
15秒前
小马甲应助科研通管家采纳,获得10
16秒前
科研通AI2S应助科研通管家采纳,获得10
16秒前
小蘑菇应助科研通管家采纳,获得10
16秒前
在水一方应助科研通管家采纳,获得10
16秒前
16秒前
我是老大应助科研通管家采纳,获得10
16秒前
HONG完成签到 ,获得积分10
16秒前
大壳发布了新的文献求助30
17秒前
19秒前
19秒前
在水一方应助Chai采纳,获得10
21秒前
21秒前
Silica1004发布了新的文献求助10
21秒前
负责乘云完成签到 ,获得积分10
22秒前
Xzy发布了新的文献求助10
22秒前
24秒前
矛头蝮应助快乐帽子采纳,获得10
24秒前
爆米花应助已秃采纳,获得20
25秒前
高分求助中
(禁止应助)【重要!!请各位详细阅读】【科研通的精品贴汇总】 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1500
Stereoelectronic Effects 1000
Robot-supported joining of reinforcement textiles with one-sided sewing heads 820
The Geometry of the Moiré Effect in One, Two, and Three Dimensions 500
含极性四面体硫代硫酸基团的非线性光学晶体的探索 500
Византийско-аланские отно- шения (VI–XII вв.) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4182348
求助须知:如何正确求助?哪些是违规求助? 3718476
关于积分的说明 11720951
捐赠科研通 3398069
什么是DOI,文献DOI怎么找? 1864362
邀请新用户注册赠送积分活动 922206
科研通“疑难数据库(出版商)”最低求助积分说明 833873