A novel weakly supervised adversarial network for thermal error modeling of electric spindles with scarce samples

计算机科学 人工智能 机器学习 领域(数学分析) 学习迁移 对抗制 卷积神经网络 领域知识 深度学习 变量(数学) 样品(材料) 人工神经网络 标记数据 数学 色谱法 数学分析 化学
作者
Xiaojuan Ma,Jiewu Leng,Zhuyun Chen,Bo Li,Xing Li,Ding Zhang,Weihua Li,Qiang Liu
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:238: 122065-122065 被引量:15
标识
DOI:10.1016/j.eswa.2023.122065
摘要

Thermal error modeling (TEM) stands as a pivotal factor in maintaining the machining accuracy of electric spindles. Deep learning (DL) techniques have shown promising potential in this area, however, they face formidable challenges including domain shift issue between training and testing datasets, as well as scarce samples due to the dynamic nature of variable working conditions. Deep transfer learning (DTL) emerges as an encouraging tool, leveraging knowledge obtained from the source domain to elevate learning outcomes within the target domain, notably addressing complicated cross-domain modeling predicaments. Nonetheless, prevailing research largely focuses on enhancing the prediction accuracy within the specific working condition, inadvertently sidestepping the problems of domain shift and scarce sample modeling. To address these issues, a novel weakly supervised adversarial network (WSAN) is proposed for cross-domain TEM with scarce samples. Firstly, the multi-scale convolutional neural network (MSCNN) is constructed to adeptly extract predictive information from multi-sensor data, effectively capturing the time-series patterns embedded within. Furthermore, the adversarial training technique is adopted to address distribution discrepancies that often manifest between distinct domains. To overcome the challenge of scarce labeled samples in the target domain, a weakly supervised learning strategy is employed to deftly control the gradient within the target domain, significantly enhancing the efficacy of positive transfer. The effectiveness and superiority of the proposed method are assessed through extensive experiments using datasets from variable working conditions. The experimental results demonstrate that the proposed method achieves satisfactory performance and outperforms state-of-the-art approaches.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
666完成签到,获得积分10
2秒前
卓矢完成签到 ,获得积分10
3秒前
MM发布了新的文献求助10
4秒前
6秒前
王杰发布了新的文献求助10
6秒前
清脆寄容应助苏孟采纳,获得10
8秒前
HN_litchi_King完成签到,获得积分10
9秒前
小马甲应助飞快的冷亦采纳,获得10
10秒前
可爱的函函应助泽ze采纳,获得10
11秒前
科研通AI5应助wangtinglk采纳,获得10
12秒前
12秒前
12秒前
hong发布了新的文献求助10
13秒前
万能图书馆应助安_采纳,获得10
15秒前
打打应助野性的致远采纳,获得10
15秒前
16秒前
糊涂涂完成签到,获得积分10
17秒前
希望天下0贩的0应助门板采纳,获得10
17秒前
无花果应助sdl采纳,获得10
18秒前
19秒前
1Aaa发布了新的文献求助10
19秒前
20秒前
古乙丁三雨完成签到,获得积分10
21秒前
Ava应助王杰采纳,获得10
23秒前
23秒前
23秒前
24秒前
24秒前
glj应助xu采纳,获得10
28秒前
29秒前
30秒前
sdl发布了新的文献求助10
31秒前
shanshan完成签到,获得积分10
33秒前
35秒前
龙阔发布了新的文献求助10
36秒前
37秒前
tRee10发布了新的文献求助10
37秒前
自然剑完成签到,获得积分10
37秒前
可靠连虎完成签到 ,获得积分10
39秒前
陨落的繁星完成签到,获得积分10
39秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796450
求助须知:如何正确求助?哪些是违规求助? 3341711
关于积分的说明 10307271
捐赠科研通 3058290
什么是DOI,文献DOI怎么找? 1678094
邀请新用户注册赠送积分活动 805873
科研通“疑难数据库(出版商)”最低求助积分说明 762838