ADP-Fuse: A novel two-layer machine learning predictor to identify antidiabetic peptides and diabetes types using multiview information

保险丝(电气) 人工智能 机器学习 计算机科学 分类器(UML) 特征(语言学) 支持向量机 工程类 语言学 哲学 电气工程
作者
Shaherin Basith,Nhat Truong Pham,Minkyung Song,Gwang Lee,Balachandran Manavalan
出处
期刊:Computers in Biology and Medicine [Elsevier BV]
卷期号:165: 107386-107386 被引量:17
标识
DOI:10.1016/j.compbiomed.2023.107386
摘要

Diabetes mellitus has become a major public health concern associated with high mortality and reduced life expectancy and can cause blindness, heart attacks, kidney failure, lower limb amputations, and strokes. A new generation of antidiabetic peptides (ADPs) that act on β-cells or T-cells to regulate insulin production is being developed to alleviate the effects of diabetes. However, the lack of effective peptide-mining tools has hampered the discovery of these promising drugs. Hence, novel computational tools need to be developed urgently. In this study, we present ADP-Fuse, a novel two-layer prediction framework capable of accurately identifying ADPs or non-ADPs and categorizing them into type 1 and type 2 ADPs. First, we comprehensively evaluated 22 peptide sequence-derived features coupled with eight notable machine learning algorithms. Subsequently, the most suitable feature descriptors and classifiers for both layers were identified. The output of these single-feature models, embedded with multiview information, was trained with an appropriate classifier to provide the final prediction. Comprehensive cross-validation and independent tests substantiate that ADP-Fuse surpasses single-feature models and the feature fusion approach for the prediction of ADPs and their types. In addition, the SHapley Additive exPlanation method was used to elucidate the contributions of individual features to the prediction of ADPs and their types. Finally, a user-friendly web server for ADP-Fuse was developed and made publicly accessible (https://balalab-skku.org/ADP-Fuse), enabling the swift screening and identification of novel ADPs and their types. This framework is expected to contribute significantly to antidiabetic peptide identification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Cici发布了新的文献求助30
2秒前
十一苗完成签到 ,获得积分10
3秒前
岁月如酒完成签到,获得积分10
3秒前
海子完成签到,获得积分10
4秒前
5秒前
XIaoLuzi发布了新的文献求助10
6秒前
7秒前
7秒前
开心完成签到,获得积分10
9秒前
欢喜素阴完成签到 ,获得积分10
10秒前
科研牛马完成签到 ,获得积分10
10秒前
海亦发布了新的文献求助10
11秒前
款款发布了新的文献求助10
12秒前
XIaoLuzi完成签到,获得积分10
12秒前
hyd1640完成签到,获得积分10
13秒前
Sofia发布了新的文献求助10
14秒前
Churchill87426完成签到,获得积分10
15秒前
太叔开山完成签到,获得积分20
15秒前
daigang完成签到 ,获得积分10
18秒前
FashionBoy应助太叔开山采纳,获得10
20秒前
强健的冰旋完成签到,获得积分10
22秒前
研友_GZ3zRn完成签到 ,获得积分0
24秒前
款款完成签到,获得积分10
24秒前
qz完成签到,获得积分10
24秒前
七里香完成签到 ,获得积分10
25秒前
易只羊完成签到,获得积分10
25秒前
kevin完成签到,获得积分10
25秒前
Fury完成签到 ,获得积分10
28秒前
1l完成签到,获得积分10
29秒前
直率的饼干完成签到,获得积分10
29秒前
开放剑鬼完成签到,获得积分10
29秒前
阿泡阿茶和阿壶完成签到,获得积分10
32秒前
ccmxigua完成签到,获得积分10
32秒前
33秒前
易止完成签到 ,获得积分10
33秒前
Sofia完成签到,获得积分10
36秒前
xixihaha完成签到,获得积分10
36秒前
吴家豪完成签到,获得积分10
37秒前
39秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
Decoding Teacher Well-being in Rural China 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4807219
求助须知:如何正确求助?哪些是违规求助? 4122120
关于积分的说明 12753279
捐赠科研通 3856850
什么是DOI,文献DOI怎么找? 2123440
邀请新用户注册赠送积分活动 1145522
关于科研通互助平台的介绍 1038074