逃避(道德)
追逃
无人机
计算机科学
透视图(图形)
控制理论(社会学)
动作(物理)
功能(生物学)
目标追求
空格(标点符号)
数学优化
人工智能
控制(管理)
数学
工程类
心理学
海洋工程
物理
操作系统
免疫学
生物
进化生物学
社会心理学
量子力学
免疫系统
作者
Liang Xu,Yuanpeng Yang,Qianyi Wang,Wei Wang,Wei Han
标识
DOI:10.1109/icoias56028.2022.9931270
摘要
From the perspective of the evader in the pursuit evasion problem of the unmanned surface vehicle (USV), this paper proposes an anti-pursuit evasion strategy for the USV based on Twin-Dueling Double Deep Q Network (T-D3QN), which uses two independent Q networks to estimate the Q value. According to characteristics of the pursuit-evasion problem of the USV, the research designs state space, action space and reward function and constructs the simulation environment to train the model. Simulation experiments show that the performance of T-D3QN is better than DQN because it can improve the escape success rate of the USV, and verify the effectiveness of the evasion strategy for the USV.
科研通智能强力驱动
Strongly Powered by AbleSci AI