GSH-depleting and H2O2-self-supplying hybrid nanozymes for intensive catalytic antibacterial therapy by photothermal-augmented co-catalysis

催化作用 过氧化氢 光热治疗 氧化还原 谷胱甘肽 组合化学 纳米载体 材料科学 共价键 体内 化学 纳米技术 纳米颗粒 生物化学 有机化学 生物技术 生物
作者
Junqin Li,Wenhua Yi,Yuze Luo,Ke Yang,Lidan He,Caiyun Xu,Le Deng,Dinggeng He
出处
期刊:Acta Biomaterialia [Elsevier BV]
卷期号:155: 588-600 被引量:45
标识
DOI:10.1016/j.actbio.2022.10.050
摘要

Nanozyme-based chemodynamic therapy (CDT) has shown tremendous potential in the treatment of bacterial infections. However, the CDT antibacterial efficacy is severely limited by the catalytic activity of nanozymes or the infection microenvironments such as insufficient hydrogen peroxide (H2O2) and overexpressed glutathione (GSH). Herein, a versatile hybrid nanozyme (MoS2/CuO2) is rationally constructed by simply decorating ultrasmall CuO2 nanodots onto lamellar MoS2 platelets of hydrangea-like MoS2 nanocarrier via a covalent Cu-S bond. The MoS2/CuO2 nanozyme exhibits the peroxidase-mimic activity for catalytically converting H2O2 produced by acid-triggered decomposition of the decorated CuO2 into hydroxyl radical (•OH). Meanwhile, the MoS2/CuO2 can consume GSH overexpressed in the infection sites via redox reaction mediated by polyvalent transition metal ions (Cu2+ and Mo6+) for enhanced CDT. More importantly, MoS2 support can promote the conversion of Cu2+ to Cu+ by a co-catalytic reaction based on the Mo4+/Mo6+ redox couples, and provide photonic hyperthermia (PTT) to augment the peroxidase-mimic activity. The developed MoS2/CuO2 nanozymes possesses a desirable catalytic property, as well as a remarkably improved antibacterial efficiency both in vitro and in vivo. Taken together, this study proposes a synergetic multiple enhancement strategy to successfully construct the versatile hybrid nanozymes for intensive in vivo PTT/CDT dual-mode anti-infective therapy. STATEMENT OF SIGNIFICANCE: Chemodynamic therapy (CDT) has shown great potentialities in the treatment of bacterial infections, while its therapeutic efficiency is severely limited by the infection microenvironments such as insufficient hydrogen peroxide (H2O2) and overexpressed glutathione (GSH). Here, we rationally construct a hybrid nanozyme (MoS2/CuO2) with peroxidase-like activity that can enhance CDT by regulating local microenvironments, that is, simultaneously self-supplying H2O2 and consuming GSH. Importantly, MoS2 support can promote the conversion of Cu2+ to Cu+ by the Mo4+/Mo6+ redox couples, and provide photonic hyperthermia (PTT) to augment the peroxidase-mimic activity. The developed MoS2/CuO2 shows desirable PTT/CDT dual-mode antibacterial efficacy both in vitro and in vivo. This study proposes a versatile hybrid nanozyme with multiple enhancement effects for intensive in vivo anti-infective therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
孙燕应助tuanheqi采纳,获得20
刚刚
123完成签到,获得积分10
刚刚
派大星完成签到,获得积分10
刚刚
发光小阿君完成签到,获得积分10
1秒前
包容的无声完成签到,获得积分10
2秒前
阿荣撒发布了新的文献求助10
2秒前
joybee完成签到,获得积分0
2秒前
清茶旧友发布了新的文献求助10
2秒前
元宝团子完成签到,获得积分10
2秒前
淡然觅海完成签到 ,获得积分10
3秒前
Christian完成签到,获得积分10
3秒前
Skye完成签到 ,获得积分10
3秒前
3秒前
不语完成签到,获得积分10
4秒前
4秒前
4秒前
打打应助123采纳,获得10
5秒前
安古妮稀完成签到,获得积分10
5秒前
小团子完成签到,获得积分10
5秒前
就这样完成签到,获得积分10
5秒前
5秒前
董小树完成签到,获得积分10
6秒前
ZK999完成签到,获得积分10
7秒前
踏实的纸飞机完成签到 ,获得积分10
7秒前
Booiys完成签到,获得积分10
7秒前
天涯完成签到 ,获得积分0
8秒前
柯柯完成签到,获得积分10
8秒前
一只蓉馍馍完成签到,获得积分10
8秒前
科研通AI5应助Peri采纳,获得10
9秒前
ss13l完成签到,获得积分10
9秒前
9秒前
田様应助渡尘采纳,获得10
9秒前
爸爸完成签到,获得积分10
10秒前
过时的砖头完成签到 ,获得积分10
10秒前
Sam十九完成签到,获得积分10
11秒前
一台小钢炮完成签到,获得积分10
11秒前
甜美帅哥发布了新的文献求助10
11秒前
12秒前
珂学家发布了新的文献求助10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Engineering the boosting of the magnetic Purcell factor with a composite structure based on nanodisk and ring resonators 240
Study of enhancing employee engagement at workplace by adopting internet of things 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3837840
求助须知:如何正确求助?哪些是违规求助? 3379891
关于积分的说明 10511672
捐赠科研通 3099555
什么是DOI,文献DOI怎么找? 1707133
邀请新用户注册赠送积分活动 821447
科研通“疑难数据库(出版商)”最低求助积分说明 772617