A multimodal predictive model for chronic kidney disease and its association with vascular complication in patients with type 2 diabetes: Model development and validation study in South Korea and the UK

肾脏疾病 糖尿病 医学 2型糖尿病 并发症 疾病 内科学 心脏病学 重症监护医学 内分泌学
作者
Jaehyeong Cho,Selin Woo,Seung Ha Hwang,Soeun Kim,Hayeon Lee,Ji-Young Hwang,Jae-Won Kim,Min Seo Kim,Lee Smith,Sooji Lee,Jinseok Lee,Hong‐Hee Won,Sang Youl Rhee,Dong Keon Yon
标识
DOI:10.2337/figshare.29315654.v1
摘要

<p dir="ltr">Objective: We aim to develop a multimodal model to predict chronic kidney disease (CKD) in patients with type 2 diabetes mellitus (T2DM), given the limited research on this integrative approach.</p><p dir="ltr">Research Design and Methods: We obtained multimodal datasets from Kyung Hee University Medical Center (South Korea; n=7028; discovery cohort) for training and internal validation and UK Biobank (n=1544; validation cohort) for external validation. CKD was defined based on the international classification of disease-9/10 codes and/or estimated glomerular filtration rate (eGFR) ≤60 mL/min/1.73m². We ensembled various deep learning models and interpreted their predictions using explainable artificial intelligence (AI) methods, including shapley additive explanations (SHAP) and gradient-weighted class activation mapping (Grad-CAM). Subsequently, we investigated the potential association between the model probability and vascular complications.</p><p dir="ltr">Results: The multimodal model, which ensembles visual geometry group 16 (VGG16) and deep neural network (DNN), presented high performance in predicting CKD, with area under the receiver operating characteristic curve (AUROC) of 0.880 (95% CI, 0.806–0.954) in the discovery cohort and 0.722 in the validation cohort. SHAP and Grad-CAM highlighted key predictors, including eGFR and optic disc, respectively. The model probability was associated with an increased risk of macrovascular complications (T1: adjusted hazard ratio, 1.42 [95% CI, 1.06–1.90]; T2: 1.59 [1.17–2.16]; and T3: 1.64 [1.20–2.26]) and microvascular complications (T3: 1.30 [1.02–1.67]).</p><p dir="ltr">Conclusions: Our multimodal AI model integrates fundus images and clinical data from binational cohorts to predict the risk of new-onset CKD within five years and associated vascular complications in patients with T2DM.</p>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
斯文败类应助枳酒采纳,获得10
1秒前
徐哈哈哈哈完成签到,获得积分20
1秒前
1秒前
1秒前
鸿俦鹤侣完成签到,获得积分10
2秒前
含蓄可冥完成签到,获得积分10
2秒前
蛋黄派发布了新的文献求助10
2秒前
yuyang完成签到,获得积分20
2秒前
林林给林林的求助进行了留言
3秒前
3秒前
4秒前
YEM发布了新的文献求助10
4秒前
5秒前
YC关闭了YC文献求助
5秒前
5秒前
5秒前
6秒前
量子星尘发布了新的文献求助10
8秒前
8秒前
chen完成签到,获得积分10
8秒前
sxb10101应助柯一一采纳,获得400
8秒前
zhang完成签到,获得积分20
9秒前
9秒前
斯文败类应助hujiayue采纳,获得10
10秒前
longlu发布了新的文献求助10
11秒前
11秒前
11秒前
Orange应助还单身的人英采纳,获得10
11秒前
haoliu完成签到,获得积分10
12秒前
李健应助Wnn采纳,获得10
12秒前
果果发布了新的文献求助10
12秒前
科研通AI2S应助小冯爱睡觉采纳,获得10
12秒前
12秒前
田様应助Rui_Rui采纳,获得10
13秒前
深情安青应助诚c采纳,获得10
13秒前
鹿梨完成签到 ,获得积分10
14秒前
14秒前
14秒前
文静谷冬完成签到 ,获得积分10
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 550
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5621273
求助须知:如何正确求助?哪些是违规求助? 4706037
关于积分的说明 14934680
捐赠科研通 4765222
什么是DOI,文献DOI怎么找? 2551555
邀请新用户注册赠送积分活动 1514048
关于科研通互助平台的介绍 1474746