脚手架
材料科学
生物医学工程
再生(生物学)
组织工程
间质细胞
基质血管部分
移植
药物输送
细胞生物学
纳米技术
医学
癌症研究
外科
生物
作者
Feng Zhao,Tianli Yang,Liuhua Zhou,Jun Zhao,Jingyu Liu,Wenwen Ping,Changcheng Zhou,Zhiqiang Qin,Ruipeng Jia
标识
DOI:10.1016/j.actbio.2023.05.041
摘要
Tissue engineering approaches offer promising alternative strategies for reconstructing bladder tissue; however, the low retention of transplanted cells and the possible risk of rejection limit their therapeutic efficacy. Clinical applicability is further limited by the lack of suitable scaffold materials to support the needs of various cell types. In the present study, we developed an artificial nanoscaffold system consisting of stromal vascular fraction (SVF) secretome (Sec) loaded onto zeolitic imidazolate framework-8 (ZIF-8) nanoparticles, which were then incorporated into bladder acellular matrix. This artificial acellular nanocomposite scaffold (ANS) can achieve gradient degradation and slowly release SVF-Sec to promote tissue regeneration. Furthermore, even after long-term cryopreservation, this completely acellular bladder nanoscaffold material still maintains its efficacy. In a rat bladder replacement model, ANS transplantation demonstrated potent proangiogenic ability and induced M2 macrophage polarization to promote tissue regeneration and restore bladder function. Our study demonstrates the safety and efficacy of the ANS, which can play a stem cell-like role while avoiding the disadvantages of cell therapy. Furthermore, the ANS can replace the bladder regeneration model based on cell-binding scaffold materials and has the potential for clinical application. This study aimed to develop a gradient-degradable artificial acellular nanocomposite scaffold (ANS) loaded with stromal vascular fraction (SVF) secretome for rehabilitating bladders. Using various in vitro methods as well as rat- and zebrafish-based in vivo models, the developed ANS was assessed for efficacy and safety. Results indicated that the ANS achieved gradient degradation and slowly released the SVF secretome to promote tissue regeneration, even after long-term cryopreservation. Furthermore, ANS transplantation demonstrated a potent pro-angiogenic ability and induced M2 macrophage polarization to promote tissue regeneration and restore bladder function in a bladder replacement model. Our study demonstrates that ANS may replace bladder regeneration models based on cell-binding scaffold materials and have potential clinical application
科研通智能强力驱动
Strongly Powered by AbleSci AI