流体体积法
计算流体力学
解算器
机械
海洋工程
计算机模拟
地质学
流量(数学)
数值分析
频道(广播)
环境科学
岩土工程
工程类
数学
物理
数学优化
数学分析
电气工程
作者
Haisu Sun,Xuan Ni,Yuxin Zhang,Kang Chen,Baoyu Ni
摘要
Ship resistance increases significantly when navigating a brash ice channel. In this study, the numerical method is applied to predict the full-scale ship resistance of bulk carriers in brash ice channels. The viscous flow computational fluid dynamics (CFD) solver was coupled with the discrete element method (DEM) to establish the brash ice model. The Euler multiphase flow’s volume of fluid (VOF) model was applied to simulate the interaction between the ship and water. The ship–brash ice interaction was simulated. Predictions of ships’ total resistance based on the numerical method and the Finnish Swedish ice class rules (FSICR) method were compared with the experimental results carried out in Hamburg Ship Model Basin (HSVA) ice tank. The numerical resistance shows a good agreement with the HSVA experiment reports and a better performance than the FSICR method. The present study shows that the numerical method could provide reasonable and practical ice resistance predictions for engineering applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI