Covalent bond inducing strong electron-phonon coupling superconductivity in MgB2 -type transition metal diboride WB2

超导电性 原子轨道 联轴节(管道) 声子 结晶学 物理 共价键 凝聚态物理 电子结构 材料科学 电子 化学 量子力学 冶金
作者
Jiajun Wang,Muyao Wang,Xiaohan Liu,Man Jiang,Liangliang Liu
出处
期刊:Physical Review Materials [American Physical Society]
卷期号:7 (7)
标识
DOI:10.1103/physrevmaterials.7.074804
摘要

A recent experiment of polycrystalline ${\mathrm{WB}}_{2}$ with hP3 (space-group 191, prototype ${\mathrm{MgB}}_{2}$) and hP12 (space-group 194, prototype ${\mathrm{WB}}_{2}$) structures was reported to realize 17-K superconductivity (SC) at 90 GPa, and the hP3 structure is believed to be responsible for this emergent SC. However, a microscopic understanding of what makes the hP3 structure so different from the hP12 structure and why the hP3 can feature such strong electron-phonon coupling (EPC) SC is still missing. Here, based on first-principles calculations, we found that in the hP3 structure, W $d$ orbitals contribute most to electronic occupation near the ${E}_{\mathrm{F}}$, and ${d}_{{z}^{2}}$ orbitals of two neighboring W atoms have some hybridization to form weak $\ensuremath{\sigma}$ bonds. The further EPC analysis indicates that the dominant ${d}_{{z}^{2}}$ states are strongly coupled with the out-of-plane phonon modes by stretching the $\mathrm{W}\text{\ensuremath{-}}\mathrm{W}\ensuremath{\sigma}$ bond, thereby yielding a large superconducting gap and high ${T}_{\mathrm{c}}$ of $\ensuremath{\sim}35$ K. By contrast, for the hP12 structure, two neighboring W atoms are isolated without charge hybridization to form the covalent bonds, and, accordingly, their phonon modes become very stiffened, which cannot effectively couple to W $d$ orbital states associated with a lower ${T}_{\mathrm{c}}$ of $\ensuremath{\sim}4$ K. Therefore, our findings not only provide an explanation for the emergent strong EPC SC in the hP3 structure, but also have important implications for the design of high-${T}_{\mathrm{c}}$ superconductors among transition metal borides.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
领导范儿应助smile~采纳,获得10
1秒前
赵亚南发布了新的文献求助10
1秒前
suijisuiji1完成签到,获得积分10
2秒前
一一发布了新的文献求助10
2秒前
3秒前
TG关注了科研通微信公众号
4秒前
5秒前
蕾蕾完成签到,获得积分10
5秒前
6秒前
lvlv发布了新的文献求助10
6秒前
6秒前
今后应助仁者无敌采纳,获得10
8秒前
研友_VZG7GZ应助ark861023采纳,获得10
8秒前
rr发布了新的文献求助10
10秒前
10秒前
11秒前
MaoTing完成签到,获得积分10
11秒前
英俊的铭应助秀丽烧鹅采纳,获得10
12秒前
SMINI发布了新的文献求助10
12秒前
12秒前
yuxin发布了新的文献求助30
13秒前
CodeCraft应助gene采纳,获得10
13秒前
马某某某某某完成签到,获得积分10
13秒前
小鱼同学发布了新的文献求助10
14秒前
深情安青应助bingbingbing采纳,获得10
14秒前
夜夜发布了新的文献求助10
15秒前
16秒前
happiness发布了新的文献求助10
16秒前
16秒前
TG发布了新的文献求助10
16秒前
duoduo完成签到,获得积分10
17秒前
望山云雾完成签到,获得积分10
18秒前
18秒前
19秒前
顾矜应助小鱼同学采纳,获得10
19秒前
altman88发布了新的文献求助10
19秒前
19秒前
19秒前
从容芮应助马某某某某某采纳,获得30
21秒前
ATOM发布了新的文献求助50
21秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
De arte gymnastica. The art of gymnastics 600
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
Stephen R. Mackinnon - Chen Hansheng: China’s Last Romantic Revolutionary (2023) 500
Sport in der Antike Hardcover – March 1, 2015 500
Boris Pesce - Gli impiegati della Fiat dal 1955 al 1999 un percorso nella memoria 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2422351
求助须知:如何正确求助?哪些是违规求助? 2111613
关于积分的说明 5345840
捐赠科研通 1839115
什么是DOI,文献DOI怎么找? 915514
版权声明 561201
科研通“疑难数据库(出版商)”最低求助积分说明 489659