Review on High-Temperature-Resistant Viscoelastic Surfactant Fracturing Fluids: State-of-the-Art and Perspectives

肺表面活性物质 反离子 压裂液 粘弹性 化学工程 胶束 聚合物 材料科学 提高采收率 流变学 化学 复合材料 有机化学 水溶液 离子 工程类
作者
Jinming Liu,Pingli Liu,Juan Du,Qiang Wang,Xiang Chen,Liqiang Zhao
出处
期刊:Energy & Fuels [American Chemical Society]
卷期号:37 (14): 9790-9821 被引量:3
标识
DOI:10.1021/acs.energyfuels.3c00488
摘要

A viscoelastic surfactant (VES) fluid is an important part of a water-based fracturing fluid. As oil and gas exploration expands into deep, high-temperature, low-permeability reservoirs, the conventional VES fracturing fluid has shown great limitations. The high-temperature-resistance mechanisms of the high-temperature-resistant VES fracturing fluids in publicly available literature were analyzed from five aspects: single-chain surfactant system, oligomeric surfactant system, counterion effect, blended surfactant system, and nano-enhanced VES system. The friction-reduction performance, sand-carrying performance, gel-breaking performance, and core-damage performance of these systems were summarized. The results show that oligomeric surfactants with a monounsaturated hydrophobic long chain (>C21) are most likely to be used for VES fracturing fluids in high-temperature reservoirs, but the loading of the surfactants is still relatively high (3–5 wt %). By reducing the repulsion among polar headgroups to effectively decrease the area of head groups, or/and penetrating into the nonpolar cores based on hydrophobic interaction to increase the average hydrophobic volume of hydrophobic tails, counterions affect the performance of VESs. The aromatic counterion salts are preferred choices for improving the temperature resistance, friction reduction, and suspended sand performance of VES fluids. The blended surfactant/synthetic polymer systems based on noncovalent interaction improve the temperature resistance of VES fluids and reduce the loading of the surfactants to a certain extent. Based on the “pseudo-cross-linking” of nanomaterials and wormlike micelles, a very small amount of nanomaterials can improve the temperature resistance of VES fluids and reduce the loading of the surfactants. The most essential and effective method to improve the temperature resistance of VES fluids for fracturing is the molecular structure design based on the packing parameter theory. However, the synthesis process or route still needs further optimization to reduce production costs. In addition, given the excellent performance of VES fluids enhanced by nanomaterials, further research should be conducted on the influence mechanism of nanomaterial type and geometric features on the performance of VESs, as well as the potential harmfulness of nanomaterials, to promote the field-scale application of nano-enhanced VES fluids.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
冬天的尔安完成签到 ,获得积分10
1秒前
深情安青应助lmy采纳,获得10
1秒前
新野紫狼完成签到,获得积分0
2秒前
好好学习完成签到,获得积分10
3秒前
zhaoxiaonuan发布了新的文献求助10
3秒前
Orange应助Li chun sheng采纳,获得10
4秒前
怡然尔芙发布了新的文献求助10
4秒前
科研小白完成签到,获得积分10
6秒前
Raine发布了新的文献求助20
6秒前
共享精神应助111采纳,获得10
6秒前
天天快乐应助酷酷的雁易采纳,获得30
7秒前
kuku完成签到,获得积分10
8秒前
无语的保温杯完成签到,获得积分10
8秒前
一番星完成签到 ,获得积分10
9秒前
Vegetable_Dog完成签到,获得积分10
9秒前
日月星陈完成签到,获得积分10
10秒前
机灵冬灵完成签到 ,获得积分10
11秒前
orixero应助加油科研采纳,获得10
11秒前
小袁完成签到,获得积分10
12秒前
12秒前
123发布了新的文献求助10
12秒前
无花果应助小薛采纳,获得10
12秒前
等待雅霜完成签到 ,获得积分10
13秒前
13秒前
111完成签到 ,获得积分10
13秒前
14秒前
Jasper应助清净163采纳,获得20
14秒前
lisu完成签到,获得积分10
15秒前
15秒前
dada完成签到,获得积分10
15秒前
15秒前
15秒前
Li chun sheng发布了新的文献求助10
18秒前
朴素幼晴发布了新的文献求助10
18秒前
18秒前
车车车完成签到,获得积分20
19秒前
19秒前
19秒前
cc完成签到,获得积分10
19秒前
QLCai发布了新的文献求助10
20秒前
高分求助中
Manual of Clinical Microbiology, 4 Volume Set (ASM Books) 13th Edition 1000
Sport in der Antike 800
Aspect and Predication: The Semantics of Argument Structure 666
De arte gymnastica. The art of gymnastics 600
少脉山油柑叶的化学成分研究 530
Electronic Structure Calculations and Structure-Property Relationships on Aromatic Nitro Compounds 500
Berns Ziesemer - Maos deutscher Topagent: Wie China die Bundesrepublik eroberte 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 有机化学 工程类 生物化学 纳米技术 物理 内科学 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 电极 光电子学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 2413674
求助须知:如何正确求助?哪些是违规求助? 2107396
关于积分的说明 5326724
捐赠科研通 1834788
什么是DOI,文献DOI怎么找? 914167
版权声明 560994
科研通“疑难数据库(出版商)”最低求助积分说明 488825