亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Structured illumination microscope image reconstruction using unrolled physics-informed generative adversarial network (UPIGAN)

计算机科学 人工智能 迭代重建 计算机视觉 反问题 深度学习 对象(语法) 噪音(视频) 过程(计算) 基本事实 图像分辨率 图像形成 图像(数学) 数学 数学分析 操作系统
作者
S. Parisa Dajkhosh,Mazharul Hossain,Chrysanthe Preza
标识
DOI:10.1117/12.2663268
摘要

In medical and microscopy imaging applications where the object is not directly visible, images are never identical to the ground truth. In three-dimensional structured illumination microscopy (3D-SIM), acquired images taken from the object have limited resolution due to the the point spread function (PSF) of the imaging system. Additionally, due to the data acquisition process, images taken under low light and in the presence of electrooptical noise can have a low signal-to-noise ratio as well as suffer from other undesirable aberrations. To obtain a high-resolution restored image, the data must be digitally processed. The inverse imaging problem in 3D-SIM has been solved using various computational imaging techniques. Traditional model-based computational approaches can result in image artifacts due to required, yet not accurately known system parameters. Furthermore, some iterative computational imaging methods can be computationally intensive. Deep learning (DL) approaches, as opposed to traditional image restoration methods, can tackle the issue without access to the analytical model. Although some are effective, they are biased since they do not use the 3D-SIM model. This research aims to provide an unrolled physics-informed (UPI) generative adversarial network (UPIGAN) for reconstructing 3D-SIM images utilizing data samples of mitochondria from a 3D-SIM system. This design uses the benefits of physics knowledge in the unrolling step. Moreover, the GAN employs a Residual Channel Attention super-resolution deep neural network (DNN) in its generator architecture. The results from both a qualitative and quantitative comparison, present a positive impact on the reconstruction when the UPI term is used in the GAN versus using the GAN architecture without it.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
牛八先生完成签到,获得积分10
2秒前
26秒前
27秒前
1分钟前
1分钟前
多边棱发布了新的文献求助10
1分钟前
1分钟前
碗碗完成签到,获得积分10
1分钟前
2分钟前
Lucas应助yzbbb采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
yzbbb发布了新的文献求助10
3分钟前
3分钟前
arsenal发布了新的文献求助10
3分钟前
精明凡双应助科研通管家采纳,获得20
4分钟前
艺_完成签到 ,获得积分10
4分钟前
懒得取名字完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
随机科研完成签到,获得积分20
4分钟前
苏梗完成签到 ,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
随机科研发布了新的文献求助30
4分钟前
李李原上草完成签到 ,获得积分0
4分钟前
4分钟前
科目三应助随机科研采纳,获得10
4分钟前
图图发布了新的文献求助10
4分钟前
arsenal发布了新的文献求助10
5分钟前
桐桐应助田20202021采纳,获得10
5分钟前
香蕉觅云应助遍空采纳,获得10
5分钟前
充电宝应助科研通管家采纳,获得10
6分钟前
6分钟前
田20202021发布了新的文献求助10
6分钟前
偌佟完成签到,获得积分10
6分钟前
mochalv123完成签到 ,获得积分10
6分钟前
科研通AI5应助图南采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Sociologies et cosmopolitisme méthodologique 400
Why America Can't Retrench (And How it Might) 400
Another look at Archaeopteryx as the oldest bird 390
Partial Least Squares Structural Equation Modeling (PLS-SEM) using SmartPLS 3.0 300
Two New β-Class Milbemycins from Streptomyces bingchenggensis: Fermentation, Isolation, Structure Elucidation and Biological Properties 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4653202
求助须知:如何正确求助?哪些是违规求助? 4039831
关于积分的说明 12494473
捐赠科研通 3730542
什么是DOI,文献DOI怎么找? 2059222
邀请新用户注册赠送积分活动 1089908
科研通“疑难数据库(出版商)”最低求助积分说明 971009