Novel Method Based on Ion Mobility Spectrometry Combined with Machine Learning for the Discrimination of Fruit Juices

主成分分析 支持向量机 机器学习 橙色(颜色) 随机森林 离子迁移光谱法 人工智能 化学计量学 响应面法 数学 计算机科学 化学 质谱法 食品科学 色谱法
作者
José Luis P. Calle,Mercedes Vázquez-Espinosa,Marta Barea-Sepúlveda,Ana Ruiz-Rodríguez,Marta Ferreiro‐González,Miguel Palma
出处
期刊:Foods [Multidisciplinary Digital Publishing Institute]
卷期号:12 (13): 2536-2536 被引量:10
标识
DOI:10.3390/foods12132536
摘要

Fruit juices are one of the most widely consumed beverages worldwide, and their production is subject to strict regulations. Therefore, this study presents a methodology based on the use of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) in combination with machine-learning algorithms for the characterization juices of different raw material (orange, pineapple, or apple and grape). For this purpose, the ion mobility sum spectrum (IMSS) was used. First, an optimization of the most important conditions in generating the HS was carried out using a Box-Behnken design coupled with a response surface methodology. The following factors were studied: temperature, time, and sample volume. The optimum values were 46.3 °C, 5 min, and 750 µL, respectively. Once the conditions were optimized, 76 samples of the different types of juices were analyzed and the IMSS was combined with different machine-learning algorithms for its characterization. The exploratory analysis by hierarchical cluster analysis (HCA) and principal component analysis (PCA) revealed a clear tendency to group the samples according to the type of fruit juice and, to a lesser extent, the commercial brand. The combination of IMSS with supervised classification techniques reported an excellent result with 100% accuracy on the test set for support vector machines (SVM) and random forest (RF) models regarding the specific fruit used. Nevertheless, all the models have proven to be an effective alternative for characterizing and classifying the different types of juices.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
陈陈陈完成签到,获得积分10
刚刚
刚刚
许甜甜鸭完成签到,获得积分10
刚刚
刚刚
默默洋葱完成签到,获得积分20
刚刚
动漫大师发布了新的文献求助10
刚刚
nanlinhua发布了新的文献求助10
刚刚
刚刚
LU发布了新的文献求助10
1秒前
慕青应助韶冷梅采纳,获得10
1秒前
期待未来的自己应助TJC采纳,获得10
2秒前
2秒前
文良颜丑完成签到,获得积分10
2秒前
3秒前
奥利奥完成签到,获得积分10
3秒前
早日毕业发布了新的文献求助10
4秒前
女娇娥完成签到,获得积分10
4秒前
萨芬完成签到,获得积分10
4秒前
王京发布了新的文献求助30
4秒前
4秒前
英俊的铭应助yyy采纳,获得10
4秒前
飞飞发布了新的文献求助10
4秒前
5秒前
良辰应助he采纳,获得10
6秒前
SONG完成签到,获得积分10
7秒前
7秒前
张豪杰发布了新的文献求助10
7秒前
没所谓发布了新的文献求助10
7秒前
galaxy发布了新的文献求助10
7秒前
zxp驳回了打打应助
7秒前
123完成签到,获得积分10
8秒前
dandna完成签到 ,获得积分10
8秒前
orixero应助nanlinhua采纳,获得10
9秒前
9秒前
hao发布了新的文献求助10
9秒前
9秒前
韶冷梅完成签到,获得积分20
10秒前
隐形曼青应助小八儿采纳,获得10
10秒前
科研通AI5应助高丽华采纳,获得10
11秒前
bibgyueli发布了新的文献求助10
11秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Technologies supporting mass customization of apparel: A pilot project 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3796238
求助须知:如何正确求助?哪些是违规求助? 3341180
关于积分的说明 10304661
捐赠科研通 3057743
什么是DOI,文献DOI怎么找? 1677834
邀请新用户注册赠送积分活动 805683
科研通“疑难数据库(出版商)”最低求助积分说明 762740