Measurement Guidance in Diffusion Models: Insight from Medical Image Synthesis

计算机科学 人工智能 计算机视觉 医学影像学 图像处理 扩散 图像(数学) 模式识别(心理学) 热力学 物理
作者
Yimin Luo,Qinyu Yang,Yuheng Fan,Haikun Qi,Menghan Xia
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [IEEE Computer Society]
卷期号:46 (12): 7983-7997 被引量:1
标识
DOI:10.1109/tpami.2024.3399098
摘要

In the field of healthcare, the acquisition of sample is usually restricted by multiple considerations, including cost, labor- intensive annotation, privacy concerns, and radiation hazards, therefore, synthesizing images-of-interest is an important tool to data augmentation. Diffusion models have recently attained state-of-the-art results in various synthesis tasks, and embedding energy functions has been proved that can effectively guide the pre-trained model to synthesize target samples. However, we notice that current method development and validation are still limited to improving indicators, such as Fréchet Inception Distance score (FID) and Inception Score (IS), and have not provided deeper investigations on downstream tasks, like disease grading and diagnosis. Moreover, existing classifier guidance which can be regarded as a special case of energy function can only has a singular effect on altering the distribution of the synthetic dataset. This may contribute to in-distribution synthetic sample that has limited help to downstream model optimization. All these limitations remind that we still have a long way to go to achieve controllable generation. In this work, we first conducted an analysis on previous guidance as well as its contributions on further applications from the perspective of data distribution. To synthesize samples which can help downstream applications, we then introduce uncertainty guidance in each sampling step and design an uncertainty-guided diffusion models. Extensive experiments on four medical datasets, with ten classic networks trained on the augmented sample sets provided a comprehensive evaluation on the practical contributions of our methodology. Furthermore, we provide a theoretical guarantee for general gradient guidance in diffusion models, which would benefit future research on investigating other forms of measurement guidance for specific generative tasks. Codes and models are available at: https://github.com/yangqy1110/MGDM
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
懒癌晚期完成签到,获得积分10
3秒前
hero应助zhiwei采纳,获得10
3秒前
西柚完成签到,获得积分10
5秒前
田様应助weiwei采纳,获得30
5秒前
6秒前
星辰大海应助甜美早晨采纳,获得10
6秒前
WxChen发布了新的文献求助10
7秒前
helpmepaper完成签到,获得积分10
8秒前
文瑄完成签到 ,获得积分0
8秒前
9秒前
Hello应助怡然幼枫采纳,获得10
9秒前
11秒前
季不住完成签到,获得积分10
11秒前
研友_LXdbaL完成签到,获得积分10
12秒前
阿尔卑斯完成签到,获得积分10
12秒前
妞妞驳回了乐乐应助
12秒前
12秒前
ybmdyr发布了新的文献求助10
13秒前
可乐SAMA发布了新的文献求助10
15秒前
文献狂人发布了新的文献求助10
15秒前
乐观的涵菱完成签到,获得积分10
18秒前
WxChen完成签到,获得积分10
18秒前
18秒前
酷炫若枫完成签到,获得积分10
18秒前
火星上初翠完成签到,获得积分10
18秒前
shine完成签到 ,获得积分10
19秒前
20秒前
ybmdyr完成签到,获得积分10
21秒前
可乐SAMA完成签到,获得积分10
21秒前
whoami完成签到,获得积分20
22秒前
甜美早晨发布了新的文献求助10
22秒前
姜sir完成签到 ,获得积分10
23秒前
姗姗_完成签到 ,获得积分10
23秒前
米饭辣椒完成签到,获得积分10
23秒前
23秒前
24秒前
研友_ndvWy8完成签到,获得积分10
25秒前
weiwei发布了新的文献求助30
26秒前
26秒前
rsdggsrser完成签到 ,获得积分10
27秒前
高分求助中
Introduction to Strong Mixing Conditions Volumes 1-3 500
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
Essentials of Pharmacoeconomics: Health Economics and Outcomes Research 3rd Edition. by Karen Rascati 300
Peking Blues // Liao San 300
Political Ideologies Their Origins and Impact 13 edition 240
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3801112
求助须知:如何正确求助?哪些是违规求助? 3346777
关于积分的说明 10330165
捐赠科研通 3063151
什么是DOI,文献DOI怎么找? 1681349
邀请新用户注册赠送积分活动 807519
科研通“疑难数据库(出版商)”最低求助积分说明 763726