Route planning optimization for symbiotic swarm robotics

群机器人 机器人学 人工智能 计算机科学 群体行为 机器人
作者
Benjamin M. Hand,Kevin Pham,Colleen P. Bailey
标识
DOI:10.1117/12.3013973
摘要

Within the landscape of military technology, the time has come for automated systems to assume missioncritical responsibilities demanding computational speeds that are beyond human capabilities. Swarm robotics exhibits a diversity of applications in many fields including surveillance, reconnaissance, and more. Regardless of the specific application, meticulous planning and optimization of traversal routes coupled with seamless communication among individual robots assumes a pivotal role. Optimized cooperative route planning enables heightened operational efficiency, yielding a reduction in operational costs while elevating overall productivity. The significance of optimization extends to each robotic ensemble and an understanding of the intricacies of route selection fosters enhanced collaborative synergy. Consequently, the swarm attains a heightened capability to undertake intricate and multifaceted missions, transcending the limits of individual capabilities. Traditional approaches have restricted the potential of swarm-based systems. There has been little focus on cooperative route planning for swarms, essentially eliminating the advantages that swarm systems provide. We propose to rectify this imbalance by considering and addressing frequently overlooked variables of dynamic obstacles and cooperative route planning. Our approach leverages the fusion of advanced machine learning techniques and the reinforcement of communication channels among the constituent agents within the swarm. The deployment of efficient machine learning models facilitates real-time adaptation to the ever-changing optimal path, effectively mitigating the negative impact of dynamic obstacles in the mission environment. Furthermore, by reinforcing the communication infrastructure within the swarm, our approach fosters a heightened sense of synergetic collaboration among swarm agents. This approach unleashes the swarm robotics' full potential by amplifying its efficiency and expanding the scope of possible applications, ushering in a new era of versatile and high-performing swarm robotic solutions.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
烟花应助昨叶何草采纳,获得10
3秒前
土豆晴发布了新的文献求助10
4秒前
个性书翠发布了新的文献求助10
5秒前
会飞的猪完成签到,获得积分10
5秒前
7秒前
8秒前
Jia完成签到 ,获得积分10
9秒前
study发布了新的文献求助10
12秒前
15秒前
16秒前
uulli发布了新的文献求助10
19秒前
老八发布了新的文献求助10
20秒前
欢呼宛秋发布了新的文献求助20
20秒前
昨叶何草发布了新的文献求助10
22秒前
嘚嘚完成签到,获得积分10
24秒前
zhang568完成签到,获得积分10
25秒前
26秒前
隐形曼青应助suka采纳,获得10
30秒前
闪闪乘风发布了新的文献求助10
32秒前
34秒前
36秒前
小白小白发布了新的文献求助30
37秒前
星辰大海应助辰123采纳,获得10
37秒前
Doctor_Peng完成签到,获得积分10
40秒前
41秒前
潍澤发布了新的文献求助10
41秒前
Ray完成签到,获得积分10
42秒前
47秒前
赘婿应助正直新烟采纳,获得30
48秒前
科研通AI5应助科研通管家采纳,获得10
49秒前
Orange应助科研通管家采纳,获得10
50秒前
50秒前
xxx应助科研通管家采纳,获得10
50秒前
小二郎应助科研通管家采纳,获得10
50秒前
香蕉觅云应助科研通管家采纳,获得10
50秒前
FashionBoy应助科研通管家采纳,获得10
50秒前
FashionBoy应助科研通管家采纳,获得10
50秒前
隐形曼青应助科研通管家采纳,获得10
50秒前
自然的亦寒完成签到,获得积分10
50秒前
50秒前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
The Martian climate revisited: atmosphere and environment of a desert planet 500
Images that translate 500
Transnational East Asian Studies 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3844800
求助须知:如何正确求助?哪些是违规求助? 3387185
关于积分的说明 10547818
捐赠科研通 3107829
什么是DOI,文献DOI怎么找? 1712119
邀请新用户注册赠送积分活动 824250
科研通“疑难数据库(出版商)”最低求助积分说明 774679