天然橡胶
玻璃化转变
分子动力学
溶解度参数
材料科学
溶解度
Atom(片上系统)
热力学
高分子化学
物理化学
复合材料
聚合物
化学
计算化学
物理
嵌入式系统
计算机科学
作者
Qionghai Chen,Ziyi Zhang,Wanhui Huang,Jiajun Qu,Qi Zhang,Xiaohui Wu,Liqun Zhang,Jun Liu
摘要
Abstract Resin is a widely used additive in rubber composites, which not only improves the processing properties of the composites but also enhances their mechanical properties, rolling resistance and wear resistance. However, there are specific differences in compatibility among resin, rubber and silica, which directly affect the performance of the composite materials. In this work, we first computed the glass transition temperature () of five resins in styrene−butadiene rubber (SBR) composites to prove the reliability of the computational method. Then, we explored the effects of different components and resin types on of SBR and found that the addition of silica can increase due to weak attractive interactions between silica and rubber molecular chains, which restrict the movement of the molecular chains. Furthermore, using solubility parameters, we analyzed the compatibility of rubber and five different resins and found that all five resins had good compatibility with rubber, especially C5/C9 copolymerized petroleum resin and hydrogenated resin. Finally, we revealed that there is a mutually attractive force between resin and silica. In summary, understanding the interactions among resins, silica and rubber is crucial for optimizing the performance of composite materials. © 2024 Society of Chemical Industry.
科研通智能强力驱动
Strongly Powered by AbleSci AI