A novel greedy genetic algorithm-based personalized travel recommendation system

计算机科学 个性化 贪婪算法 遗传算法 兴趣点 定向运动 旅游 光学(聚焦) TRIPS体系结构 数学优化 算法 机器学习 数据挖掘 人工智能 数学 万维网 物理 光学 并行计算 法学 政治学
作者
Remigijus Paulavičius,Linas Stripinis,Simona Sutavičiūtė,Dmitrij Kočegarov,Ernestas Filatovas
出处
期刊:Expert Systems With Applications [Elsevier BV]
卷期号:230: 120580-120580 被引量:32
标识
DOI:10.1016/j.eswa.2023.120580
摘要

In recent years, there has been a significant increase in the utilization of Tourism Recommendation Systems (TRS) to enhance tourist satisfaction. However, planning a trip can be a daunting and time-consuming process, leading to concerns for travelers. This paper focuses on developing a highly personalized TRS that considers the complexities and limitations of tour itinerary planning. To achieve this, we propose an extension of the constrained orienteering problem that selects the most suitable attractions based on various constraints, such as maximum tour duration, mandatory visits, and start and end locations. In addition, we introduce the use of tier constraints to limit the time spent on similar attractions. In this study, we also propose a novel personalization approach that considers the individual preferences of tourists and generates personalized ratings for points of interest. Next, we focus on developing a new greedy genetic algorithm to address the NP-hard problem of finding optimal or near-optimal solutions. To assess the performance of the developed algorithm, we conducted a sensitivity analysis of the input parameters. Using different user profiles, we demonstrated its effectiveness on a real-world London city dataset. Moreover, we conducted a comparative experimental analysis of the algorithm with four baseline algorithms, and the results were statistically analyzed using non-parametric tests such as Wilcoxon and Friedman. Our algorithm achieved the best-known solutions for 100% of the instances tested, demonstrating its efficiency for large-scale problems with 200-300 points of interest. Furthermore, our TRS provides highly personalized tourist trips, making it a valuable tool for tourists. The new greedy genetic algorithm and unique personalization approach are significant features of the new GlobeTrott tourist recommendation system, which is accessible on popular mobile operating systems and through the website at https://www.globetrott.com/.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lipc完成签到,获得积分10
刚刚
bkagyin应助月儿采纳,获得10
刚刚
蟹蟹发布了新的文献求助10
刚刚
guanfan发布了新的文献求助10
刚刚
1秒前
zzzzzzzzzj完成签到,获得积分20
1秒前
周小鱼发布了新的文献求助10
2秒前
Eva完成签到,获得积分10
3秒前
好吃的蛋挞完成签到,获得积分10
3秒前
SciGPT应助冷山采纳,获得10
4秒前
RNAPW完成签到,获得积分10
5秒前
5秒前
在水一方应助Jiaowen采纳,获得10
6秒前
刘心茹关注了科研通微信公众号
6秒前
iNk应助在冲ss采纳,获得20
6秒前
学术pig完成签到,获得积分10
6秒前
7秒前
yy发布了新的文献求助10
7秒前
8秒前
小馒头完成签到,获得积分10
8秒前
HEAUBOOK应助周小鱼采纳,获得10
8秒前
小马甲应助大辉采纳,获得10
9秒前
科研助手6应助zoyo采纳,获得10
9秒前
9秒前
HY发布了新的文献求助20
10秒前
寒冷依秋完成签到,获得积分10
10秒前
Aeon发布了新的文献求助50
11秒前
kery发布了新的文献求助10
11秒前
12秒前
FBQZDJG2122完成签到,获得积分10
13秒前
充电宝应助盼波刘采纳,获得20
13秒前
张zhang发布了新的文献求助10
13秒前
小悦子完成签到,获得积分10
14秒前
受伤邴完成签到,获得积分10
14秒前
cbx发布了新的文献求助10
14秒前
淡然立轩完成签到,获得积分10
14秒前
好的番茄loconte完成签到,获得积分10
16秒前
专一的善愁完成签到 ,获得积分10
16秒前
灵筠驳回了李健应助
16秒前
lucky_wan发布了新的文献求助30
17秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
China Gadabouts: New Frontiers of Humanitarian Nursing, 1941–51 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3793934
求助须知:如何正确求助?哪些是违规求助? 3338845
关于积分的说明 10292446
捐赠科研通 3055344
什么是DOI,文献DOI怎么找? 1676572
邀请新用户注册赠送积分活动 804572
科研通“疑难数据库(出版商)”最低求助积分说明 761980