Harnessing Lightweight Transformer With Contextual Synergic Enhancement for Efficient 3D Medical Image Segmentation

作者
Xinyu Liu,Zhen Chen,Wuyang Li,Chenxin Li,Yixuan Yuan
出处
期刊:IEEE Transactions on Pattern Analysis and Machine Intelligence [Institute of Electrical and Electronics Engineers]
卷期号:PP: 1-16
标识
DOI:10.1109/tpami.2025.3640233
摘要

Transformers have shown remarkable performance in 3D medical image segmentation, but their high computational requirements and need for large amounts of labeled data limit their applicability. To address these challenges, we consider two crucial aspects: model efficiency and data efficiency. Specifically, we propose Light-UNETR, a lightweight transformer designed to achieve model efficiency. Light-UNETR features a Lightweight Dimension Reductive Attention (LIDR) module, which reduces spatial and channel dimensions while capturing both global and local features via multi-branch attention. Additionally, we introduce a Compact Gated Linear Unit (CGLU) to selectively control channel interaction with minimal parameters. Furthermore, we introduce a Contextual Synergic Enhancement (CSE) learning strategy, which aims to boost the data efficiency of Transformers. It first leverages the extrinsic contextual information to support the learning of unlabeled data with Attention-Guided Replacement, then applies Spatial Masking Consistency that utilizes intrinsic contextual information to enhance the spatial context reasoning for unlabeled data. Extensive experiments on various benchmarks demonstrate the superiority of our approach in both performance and efficiency. For example, with only 10% labeled data on the Left Atrial Segmentation dataset, our method surpasses BCP by 1.43% Jaccard while drastically reducing the FLOPs by 90.8% and parameters by 85.8%. Code is released at https://github.com/CUHK-AIM-Group/Light-UNETR.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
li发布了新的文献求助10
1秒前
charles发布了新的文献求助10
1秒前
2秒前
3秒前
XXXX发布了新的文献求助10
4秒前
隐形曼青应助七星茶采纳,获得30
5秒前
6秒前
li完成签到,获得积分10
7秒前
GZPFJMU完成签到,获得积分10
8秒前
体贴柜子完成签到 ,获得积分10
9秒前
Bystander完成签到 ,获得积分10
9秒前
温柔的中蓝完成签到,获得积分10
9秒前
10秒前
10秒前
AspenW发布了新的文献求助10
10秒前
Xie完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
13秒前
Szw666完成签到,获得积分10
13秒前
yy完成签到,获得积分10
13秒前
曦耀发布了新的文献求助10
13秒前
13秒前
贪玩的秋柔应助danli采纳,获得10
14秒前
科研通AI6应助dd采纳,获得10
14秒前
慕青应助Tigher采纳,获得10
14秒前
田様应助显隐采纳,获得10
15秒前
15秒前
XXXX完成签到,获得积分10
16秒前
02发布了新的文献求助10
17秒前
18秒前
18秒前
科研通AI6应助juan采纳,获得10
19秒前
21秒前
阳光的荠发布了新的文献求助10
24秒前
追光者完成签到,获得积分10
24秒前
思源应助孝顺的班采纳,获得10
24秒前
张老涵发布了新的文献求助30
25秒前
26秒前
26秒前
27秒前
英俊的铭应助直率绮南采纳,获得10
27秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5638086
求助须知:如何正确求助?哪些是违规求助? 4744566
关于积分的说明 15001034
捐赠科研通 4796214
什么是DOI,文献DOI怎么找? 2562406
邀请新用户注册赠送积分活动 1521889
关于科研通互助平台的介绍 1481759