Rail surface defect detection using a transformer-based network

计算机科学 人工智能 可视化 稳健性(进化) 变压器 编码器 卷积神经网络 深度学习 特征提取 机器学习 模式识别(心理学) 工程类 电压 电气工程 生物化学 化学 基因 操作系统
作者
Feng Guo,Jian Liu,Yu Qian,Quanyi Xie
出处
期刊:Journal of Industrial Information Integration [Elsevier BV]
卷期号:38: 100584-100584 被引量:6
标识
DOI:10.1016/j.jii.2024.100584
摘要

The detection of Rail Surface Defects (RSDs) plays a critical role in railway track maintenance. Traditional image processing methods exhibit limitations due to their intricate design and insufficient robustness, thereby restricting their broader applications. Recently, deep learning-based RSD detection methods have drawn great attention. However, these methods predominantly rely on Convolutional Neural Networks (CNN), neglecting the hierarchical linkages amongst disparate features, which impedes the refined portrayal of RSDs. To address these issues, we propose RailFormer, a novel system leveraging the capabilities of Transformer-based networks for the precise and efficient detection of RSDs. The encoder in RailFormer incorporates overlapped patch merging, efficient self-attention, and a Mix-feed Forward Network (FFN), all meticulously designed to bolster feature fusion from both global and local perspectives. Additionally, we have implemented a Criss-Cross attention module within the decoder to facilitate RSD detection and manage computational complexity. In this study, the proposed RailFormer and four other models including SegFormer, Swin Transformer, ViT, and UNet are trained and compared. We employ the widely used public RSD datasets RSDD, encompassing both Type-I and Type-II RSDD images and a customized RSD dataset, as a basis for performance comparison. The training outcomes and visualization results show that RailFormer achieves the highest mean Intersection over Union (mIoU) and superior visualization performance on the RSDD and the customized RSD datasets. These results demonstrate the superiority of RailFormer and underline its potential for future deployment in railway track inspection applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星尘幻剑完成签到,获得积分10
1秒前
顺心绮兰发布了新的文献求助10
1秒前
田様应助谢书南采纳,获得10
1秒前
所所应助闾丘山菡采纳,获得10
1秒前
keira发布了新的文献求助10
2秒前
3秒前
淋湿巴黎完成签到,获得积分10
3秒前
4秒前
4秒前
凝黛发布了新的文献求助50
5秒前
楚楚楚完成签到,获得积分10
7秒前
灵巧尔云完成签到 ,获得积分10
8秒前
不吃香菜完成签到,获得积分10
9秒前
10秒前
健壮问兰完成签到 ,获得积分10
10秒前
12秒前
yangyangyang完成签到,获得积分10
12秒前
keira完成签到,获得积分20
12秒前
向晚完成签到,获得积分10
13秒前
15秒前
LL发布了新的文献求助10
15秒前
Changzhao发布了新的文献求助10
15秒前
xcx完成签到,获得积分10
17秒前
自觉紫安发布了新的文献求助10
17秒前
17秒前
18秒前
暮光的加纳完成签到,获得积分10
18秒前
19秒前
爱窦完成签到 ,获得积分10
19秒前
CipherSage应助F1y采纳,获得10
19秒前
19秒前
我很懵逼发布了新的文献求助10
20秒前
石楠完成签到,获得积分10
21秒前
21秒前
杨33完成签到,获得积分10
21秒前
22秒前
zho发布了新的文献求助10
22秒前
周芷卉完成签到 ,获得积分10
22秒前
23秒前
张瑜发布了新的文献求助10
23秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Resonance: A Sociology of Our Relationship to the World 200
Worked Bone, Antler, Ivory, and Keratinous Materials 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3828398
求助须知:如何正确求助?哪些是违规求助? 3370744
关于积分的说明 10464568
捐赠科研通 3090632
什么是DOI,文献DOI怎么找? 1700487
邀请新用户注册赠送积分活动 817859
科研通“疑难数据库(出版商)”最低求助积分说明 770566