亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A finite element-convolutional neural network model (FE-CNN) for stress field analysis around arbitrary inclusions

卷积神经网络 计算机科学 代表(政治) 领域(数学) 压力(语言学) 有限元法 应力场 人工智能 人工神经网络 替代模型 灵敏度(控制系统) 模式识别(心理学) 算法 机器学习 数学 工程类 结构工程 政治 哲学 语言学 法学 纯数学 电子工程 政治学
作者
Mohammad Rezasefat,James D. Hogan
出处
期刊:Machine learning: science and technology [IOP Publishing]
卷期号:4 (4): 045052-045052 被引量:20
标识
DOI:10.1088/2632-2153/ad134a
摘要

Abstract This study presents a data-driven finite element-machine learning surrogate model for predicting the end-to-end full-field stress distribution and stress concentration around an arbitrary-shaped inclusion. This is important because the model’s capacity to handle large datasets, consider variations in size and shape, and accurately replicate stress fields makes it a valuable tool for studying how inclusion characteristics affect material performance. An automatized dataset generation method using finite element simulation is proposed, validated, and used for attaining a dataset with one thousand inclusion shapes motivated by experimental observations and their corresponding spatially-varying stress distributions. A U-Net-based convolutional neural network (CNN) is trained using the dataset, and its performance is evaluated through quantitative and qualitative comparisons. The dataset, consisting of these stress data arrays, is directly fed into the CNN model for training and evaluation. This approach bypasses the need for converting the stress data into image format, allowing for a more direct and efficient input representation for the CNN. The model was evaluated through a series of sensitivity analyses, focusing on the impact of dataset size and model resolution on accuracy and performance. The results demonstrated that increasing the dataset size significantly improved the model’s prediction accuracy, as indicated by the correlation values. Additionally, the investigation into the effect of model resolution revealed that higher resolutions led to better stress field predictions and reduced error. Overall, the surrogate model proved effective in accurately predicting the effective stress concentration in inclusions, showcasing its potential in practical applications requiring stress analysis such as structural engineering, material design, failure analysis, and multi-scale modeling.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CipherSage应助百里幻竹采纳,获得10
4秒前
matrixu完成签到,获得积分10
4秒前
11秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
悦耳的妙竹完成签到,获得积分10
19秒前
张兴华发布了新的文献求助10
20秒前
27秒前
烟花应助张兴华采纳,获得10
28秒前
昵称完成签到,获得积分10
41秒前
Willow完成签到,获得积分10
54秒前
59秒前
1分钟前
1分钟前
百里幻竹发布了新的文献求助10
1分钟前
1分钟前
1分钟前
美满尔蓝完成签到,获得积分10
1分钟前
1分钟前
2分钟前
shhoing应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
昏睡的科研小白完成签到 ,获得积分10
2分钟前
gexzygg应助Happer采纳,获得10
2分钟前
哈哈哈完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
Akim应助zmy采纳,获得30
2分钟前
小蘑菇应助Linyi采纳,获得10
2分钟前
2分钟前
Linyi完成签到,获得积分10
2分钟前
西吴完成签到 ,获得积分10
2分钟前
zmy发布了新的文献求助10
2分钟前
2分钟前
breeze完成签到,获得积分10
2分钟前
Linyi发布了新的文献求助10
3分钟前
坚定山柳发布了新的文献求助10
3分钟前
英俊的铭应助起司菌菇汤采纳,获得10
3分钟前
陈嘉良完成签到,获得积分10
3分钟前
坚定山柳完成签到,获得积分10
3分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Scope of Slavic Aspect 600
Foregrounding Marking Shift in Sundanese Written Narrative Segments 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5538641
求助须知:如何正确求助?哪些是违规求助? 4625711
关于积分的说明 14596757
捐赠科研通 4566378
什么是DOI,文献DOI怎么找? 2503216
邀请新用户注册赠送积分活动 1481345
关于科研通互助平台的介绍 1452701