Automated Image Clarity Detection for the Improvement of Colposcopy Imaging with Multiple Devices

阴道镜检查 清晰 计算机科学 计算机视觉 人工智能 图像(数学) 医学 内科学 癌症 生物化学 化学 宫颈癌
作者
Lillian Ekem,Erica Skerrett,Megan J. Huchko,Nirmala Ramanujam
标识
DOI:10.2139/ssrn.4725066
摘要

The proportion of women dying from cervical cancer in middle- and low-income countries is over 60%, twice that of their high-income counterparts. A primary screening strategy to eliminate this burden is cervix visualization and application of 3-5% acetic acid, inducing contrast in potential lesions. Recently, machine learning tools have emerged to aid visual diagnosis. As low-cost visualization tools expand, it is important to maximize image quality at the time of the exam or of images that are used in algorithms. Objective: In this study, we present the use of an object detection algorithm, the YOLOv5 model, to identify cervix regions of interest and describe blur within a multi-device image database. Methods: We took advantage of the Fourier domain to provide pseudo-labeling of training and testing images. A YOLOv5 model was trained using Pocket Colposcope, Mobile ODT EVA, and standard of care digital colposcope images. The former two are mobile devices. Results: When tested on all devices, this model achieved a mean average precision score, sensitivity, and specificity of 0.9, 0.89, and 0.89, respectively, reflecting the generalizability of the algorithm. Compared to physician annotation, it yielded an accuracy of 0.72. Conclusion: This method provides an informed quantitative analysis of captured images, can be generalized across different imaging devices, and is highly concordant with expert annotation. Significance: This quality control framework can assist in the standardization of colposcopy workflow, data acquisition, and image analysis and in doing so increase the availability of usable positive images for the development of deep learning algorithms.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兰兰完成签到,获得积分10
刚刚
QQqq完成签到,获得积分10
刚刚
刚刚
柚木发布了新的文献求助10
1秒前
orixero应助tian采纳,获得10
1秒前
温纲完成签到,获得积分10
1秒前
kx完成签到,获得积分10
1秒前
2秒前
外向梦安完成签到,获得积分10
2秒前
3秒前
3秒前
CipherSage应助搞怪静曼采纳,获得10
3秒前
3秒前
LiLi完成签到,获得积分10
4秒前
Lucas应助细腻新烟采纳,获得10
4秒前
天天快乐应助科研通管家采纳,获得10
4秒前
英姑应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
小马甲应助科研通管家采纳,获得10
4秒前
彭于晏应助科研通管家采纳,获得10
4秒前
orixero应助科研通管家采纳,获得10
4秒前
Cloud9应助科研通管家采纳,获得10
4秒前
隐形曼青应助科研通管家采纳,获得10
4秒前
叮ding发布了新的文献求助10
5秒前
学术达人应助科研通管家采纳,获得150
5秒前
脑洞疼应助科研通管家采纳,获得10
5秒前
乐乐应助科研通管家采纳,获得10
5秒前
科目三应助科研通管家采纳,获得10
5秒前
5秒前
SYLH应助科研通管家采纳,获得20
5秒前
5秒前
5秒前
Lucas应助zhc采纳,获得10
5秒前
6秒前
外向梦安发布了新的文献求助10
6秒前
ding应助BMG采纳,获得10
6秒前
陈图图发布了新的文献求助10
7秒前
671完成签到,获得积分10
7秒前
meng发布了新的文献求助30
7秒前
7秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3951401
求助须知:如何正确求助?哪些是违规求助? 3496844
关于积分的说明 11084706
捐赠科研通 3227245
什么是DOI,文献DOI怎么找? 1784364
邀请新用户注册赠送积分活动 868370
科研通“疑难数据库(出版商)”最低求助积分说明 801110