Current State of Understanding of the Solid-Electrolyte Interphase (SEI) in Lithium-Ion Cells and Its Relationship to Formation Cycling

电解质 锂(药物) 石墨 阳极 化学工程 化学 电化学 电池(电) 材料科学 无机化学 电极 有机化学 功率(物理) 医学 量子力学 物理化学 物理 工程类 内分泌学
作者
David L. Wood,Jianlin Li,Claus Daniel,Debasish Mohanty,Seong Jin An,Shrikant C. Nagpure
出处
期刊:Meeting abstracts 卷期号:MA2015-01 (2): 229-229
标识
DOI:10.1149/ma2015-01/2/229
摘要

The process of formation cycling refers to the electrochemical side reactions involved with creating a “passive” film on the anode active material, for instance graphite, known as the solid electrolyte interface (SEI) layer. This interfacial layer is formed during the first several charge-discharge cycles primarily by the reaction of electrolyte components with graphite at reducing potentials near the equilibrium potential of lithium metal (-3.045 V vs. SHE), and it plays a protective role by preventing the graphite from undergoing subsequent reaction with the electrolyte solvent and salt. [1] An ideal SEI layer should be thin, electrochemically inert, electronically insulating, and conductive to lithium ions. The commonly accepted hypothesis of the structure and composition of the SEI layer is an inner (interface with the graphite surface) inorganic layer of compounds such as LiF, Li 2 CO 3 , LiOH, LiO 2 , etc. and an outer (interface with the electrolyte solvent) organic layer primarily consisting of alkyl carbonates such as lithium ethylene dicarbonate (LiEDC). However, obtaining direct experimental evidence of SEI-layer composition and structure is extremely challenging. Information about thicknesses, constituent mass fractions, crystallinity, reactivity, and how these characteristics change from early cell life through thousands of charge-discharge cycles has remained elusive. Formation cycling is performed immediately after a lithium ion cell has been constructed and filled with electrolyte, and it has a profound economic impact on lithium ion battery manufacturing. The formation process requires that battery producers install many cycling stations to complete the process, which results in a heavy capital equipment investment and a much larger plant size. The irreversible capacity loss associated with anode SEI formation involves the consumption of lithium from the fresh cathode, resulting in a diminished battery lifetime. The formation process occurs in two successive stages, with the first stage involving formation of a highly resistive SEI layer at higher anode potentials (>0.25 V vs. Li/Li + ). The second stage involves simultaneous intercalation of lithium into the graphite at potentials <0.25 V vs. Li/Li + where the SEI layer is converted to a highly conductive film. [2] Fong et al. showed that the second stage involving the initial intercalation of lithium into graphite does not occur without the proper passivating electrolyte solvent and a sufficient coverage of SEI film. [3] There are three primary methods of formation cycling, which consist of a two-step current-charge formation, [4] pulse formation, [5] or the ageing process at elevated temperature. [6] In industry, combinations of these three approaches are often used. Electrode wettability plays a critical role in SEI layer formation. [7] After electrodes are coated and dried, they are usually calendered at high pressure to compact the composite structure, thus improving the energy density of the electrode layer. However, the electrode porosity is correspondingly reduced to only 30-35%, which has a significant impact on the pore-size distribution and the related wetting of the electrolyte. 8 Wettability of the electrolyte to the electrode pores can be enhanced in two ways: 1) by supplying an additive to the electrolyte to lower its composite surface tension; and 2) by increasing the composite surface energy of the electrode. There is evidence that both of these approaches are effective, but the latter will be the focus of this presentation, especially as it relates to the SEI layer formation chemistry, growth in early cell life, and degradation in aged cells. Acknowledgment This research at Oak Ridge National Laboratory (ORNL), managed by UT Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725, was sponsored by the Office of Energy Efficiency and Renewable Energy (EERE) Vehicle Technologies Office (VTO) Applied Battery Research (ABR) subprogram (Program Managers: Peter Faguy and David Howell). References [1] P. Arora, R. E. White, J. Electrochem. Soc. , 145 , 3647 (1998). [2] S. Zhang, M. S. Ding, K. Xu, J. Allen, T. R. Jow, Electrochem. Solid State Lett. , 4 , A206 (2001). [3] R. Fong, U. von Sacken, J. R. Dahn, J. Electrochem. Soc. , 137 , 2009 (1990). [4] P. C. J. Chiang, M. S. Wu, J. C. Lin, Electrochem. Solid State Lett. , 8 , A423 (2005). [5] J. Li, E. Murphy, J. Winnick, P. A. Kohl, J. Power Sources , 102 , 302 (2001). [6] J. Vetter, P. Novák, M. R. Wagner, C. Veit, K. C. Möller, J. O. Besenhard, M. Winter, M. Wohlfahrt-Mehrens, C. Vogler, A. Hammouche, J. Power Sources , 147 , 269 (2005). [7] S.-Y. Yoon, R. Iocco, U.S. Patent Application 12/558,091 (A123 Systems, Inc.), 2010.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
午木完成签到,获得积分10
刚刚
刚刚
顺心从霜发布了新的文献求助10
刚刚
满意的醉蝶完成签到,获得积分10
刚刚
啦哈啦哈啦完成签到,获得积分10
刚刚
沐沐汐完成签到 ,获得积分10
1秒前
1111完成签到,获得积分10
1秒前
todo完成签到,获得积分10
2秒前
大方百招完成签到,获得积分10
2秒前
改长杉发布了新的文献求助10
2秒前
x_x完成签到,获得积分10
3秒前
知了完成签到,获得积分10
3秒前
天阳完成签到,获得积分10
4秒前
zy发布了新的文献求助10
4秒前
Acanyi完成签到,获得积分10
4秒前
fanch1122完成签到,获得积分10
5秒前
皑似山上雪完成签到,获得积分10
5秒前
姜丝罐罐n完成签到 ,获得积分10
6秒前
今后应助陈M雯采纳,获得10
6秒前
卡布达完成签到,获得积分10
7秒前
儒雅的若翠完成签到,获得积分10
7秒前
llk完成签到,获得积分10
8秒前
害羞秋莲完成签到,获得积分10
8秒前
WHT完成签到,获得积分10
8秒前
小蘑菇应助科研通管家采纳,获得10
8秒前
Stella应助科研通管家采纳,获得10
8秒前
蛋花肉圆汤完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得20
8秒前
过奖啦完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得20
8秒前
8秒前
科目三应助科研通管家采纳,获得10
9秒前
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
小青椒应助科研通管家采纳,获得30
9秒前
小马甲应助科研通管家采纳,获得10
9秒前
田様应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
张宇宁完成签到 ,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599985
求助须知:如何正确求助?哪些是违规求助? 4685775
关于积分的说明 14839394
捐赠科研通 4674628
什么是DOI,文献DOI怎么找? 2538482
邀请新用户注册赠送积分活动 1505631
关于科研通互助平台的介绍 1471109