Tailoring Evolutionary Algorithms to Solve the Multiobjective Location-Routing Problem for Biomass Waste Collection

计算机科学 多目标优化 生物量(生态学) 进化计算 布线(电子设计自动化) 遗传算法 进化算法 数学优化 算法 计算机网络 数学 生态学 生物
作者
Yuanrui Li,Qiuhong Zhao,Shengxiang Yang,Yinan Guo
出处
期刊:IEEE Transactions on Evolutionary Computation [Institute of Electrical and Electronics Engineers]
卷期号:28 (2): 489-500 被引量:6
标识
DOI:10.1109/tevc.2023.3265869
摘要

Location-routing problems (LRPs) widely exist in logistics activities. For the biomass waste collection, there is a recognized need for novel models to locate the collection facilities and plan the vehicle routes. So far most location-routing models fall into the cost-driven-only category. However, comprehensive objectives are required in the specific context, such as time-dependent pollution and speed- and load-related emission. Furthermore, LRPs are hierarchical by nature, containing the facility location problems (strategic level) and the vehicle routing problems (VRPs) (tactical level). Existing studies in this field usually adopt computational intelligence methods directly without decomposing the problem. This can be inefficient especially when multiple objectives are applied. Motivated by these, we develop a novel multiobjective optimization model for the LRP for biomass waste collection. To solve this model, we explore the way to tailor evolutionary algorithms to the hierarchical structure. We develop adapted versions of two commonly used evolutionary algorithms: 1) the genetic algorithm and 2) the ant colony optimization algorithm. For the genetic algorithm, we divide the population by the strategic level decisions, so that each subpopulation has a fixed location plan, breaking the LRP down into many multidepot VRPs. For the ant colony optimization, we use an additional pheromone vector to track the good decisions on the location level, and segregate the pheromones related to different satellite depots to avoid misleading information. Thus, the problem degenerates into VRP. Experimental results show that our proposed methods have better performances on the LRP for biomass waste collection.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助叔叔采纳,获得10
刚刚
悲凉的台灯完成签到,获得积分10
刚刚
温柔的惜儿应助aefs采纳,获得10
刚刚
yy完成签到,获得积分10
1秒前
晚睡是小狗完成签到,获得积分10
1秒前
vv发布了新的文献求助10
1秒前
一一发布了新的文献求助20
1秒前
2秒前
YD发布了新的文献求助10
2秒前
852应助WanMoledy采纳,获得10
2秒前
三硕发布了新的文献求助10
3秒前
3秒前
Dannie发布了新的文献求助10
3秒前
wanci应助sdl采纳,获得10
4秒前
4秒前
许自通发布了新的文献求助10
4秒前
UNyang完成签到,获得积分10
4秒前
赘婿应助ysw979采纳,获得10
5秒前
俊逸的雪冥完成签到,获得积分20
5秒前
6秒前
6秒前
小液滴完成签到,获得积分10
6秒前
而发的完成签到,获得积分20
6秒前
科目三应助小冲采纳,获得10
7秒前
7秒前
7秒前
7秒前
8秒前
8秒前
Zetlynn发布了新的文献求助20
8秒前
Khr1stINK发布了新的文献求助20
9秒前
9秒前
9秒前
科研通AI5应助开朗的仰采纳,获得10
10秒前
科研星发布了新的文献求助10
10秒前
11秒前
11秒前
Rico发布了新的文献求助10
11秒前
WEI完成签到,获得积分10
11秒前
情怀应助玉米大西瓜采纳,获得10
12秒前
高分求助中
Thinking Small and Large 500
Algorithmic Mathematics in Machine Learning 500
Handbook of Innovations in Political Psychology 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
《续天台宗全书•史传1--天台大师传注释类》 300
Visceral obesity is associated with clinical and inflammatory features of asthma: A prospective cohort study 300
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3838908
求助须知:如何正确求助?哪些是违规求助? 3381351
关于积分的说明 10517883
捐赠科研通 3100836
什么是DOI,文献DOI怎么找? 1707788
邀请新用户注册赠送积分活动 821920
科研通“疑难数据库(出版商)”最低求助积分说明 773048