Untrained deep network powered with explicit denoiser for phase recovery in inline holography

计算机科学 全息术 深度学习 人工神经网络 迭代重建 噪音(视频) 人工智能 降噪 算法 图像(数学) 光学 物理
作者
Ashwini S. Galande,Vikas Thapa,Hanu Phani Ram Gurram,Renu John
出处
期刊:Applied Physics Letters [American Institute of Physics]
卷期号:122 (13) 被引量:12
标识
DOI:10.1063/5.0144795
摘要

Single-shot reconstruction of the inline hologram is highly desirable as a cost-effective and portable imaging modality in resource-constrained environments. However, the twin image artifacts, caused by the propagation of the conjugated wavefront with missing phase information, contaminate the reconstruction. Existing end-to-end deep learning-based methods require massive training data pairs with environmental and system stability, which is very difficult to achieve. Recently proposed deep image prior (DIP) integrates the physical model of hologram formation into deep neural networks without any prior training requirement. However, the process of fitting the model output to a single measured hologram results in the fitting of interference-related noise. To overcome this problem, we have implemented an untrained deep neural network powered with explicit regularization by denoising (RED), which removes twin images and noise in reconstruction. Our work demonstrates the use of alternating directions of multipliers method (ADMM) to combine DIP and RED into a robust single-shot phase recovery process. The use of ADMM, which is based on the variable splitting approach, made it possible to plug and play different denoisers without the need of explicit differentiation. Experimental results show that the sparsity-promoting denoisers give better results over DIP in terms of phase signal-to-noise ratio (SNR). Considering the computational complexities, we conclude that the total variation denoiser is more appropriate for hologram reconstruction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wyfyq完成签到,获得积分10
刚刚
科研通AI5应助小小牛采纳,获得10
刚刚
Elytra发布了新的文献求助30
1秒前
kk完成签到 ,获得积分10
1秒前
爱静静应助laohu2采纳,获得30
1秒前
脑洞疼应助laohu2采纳,获得10
1秒前
BruceQ发布了新的文献求助10
1秒前
1秒前
闪闪凝冬完成签到,获得积分10
1秒前
辣椒完成签到,获得积分10
1秒前
谷遇完成签到,获得积分10
2秒前
yan发布了新的文献求助10
2秒前
小树苗完成签到,获得积分10
2秒前
3秒前
3秒前
连忘幽完成签到 ,获得积分10
4秒前
和谐的万宝路完成签到,获得积分10
4秒前
方方发布了新的文献求助10
4秒前
4秒前
文静完成签到 ,获得积分10
4秒前
小小鱼完成签到,获得积分10
5秒前
斯文败类应助bsc采纳,获得10
6秒前
十一完成签到 ,获得积分10
6秒前
nan完成签到,获得积分10
6秒前
天天快乐应助月浅采纳,获得10
7秒前
Cindy完成签到,获得积分10
7秒前
阿辽发布了新的文献求助10
7秒前
科研通AI2S应助天天向上采纳,获得10
8秒前
研友_Lpawrn完成签到,获得积分10
8秒前
chenchen完成签到,获得积分20
8秒前
Kiosta应助小费采纳,获得30
8秒前
烊烊坨完成签到,获得积分10
8秒前
科研通AI2S应助吖吖采纳,获得10
9秒前
1234354346完成签到,获得积分10
9秒前
9秒前
小刘完成签到,获得积分10
10秒前
lulu完成签到,获得积分10
10秒前
sobergod完成签到,获得积分10
10秒前
dyce完成签到,获得积分10
11秒前
13秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Technologies supporting mass customization of apparel: A pilot project 450
A Field Guide to the Amphibians and Reptiles of Madagascar - Frank Glaw and Miguel Vences - 3rd Edition 400
Brain and Heart The Triumphs and Struggles of a Pediatric Neurosurgeon 400
Cybersecurity Blueprint – Transitioning to Tech 400
Mixing the elements of mass customisation 400
Периодизация спортивной тренировки. Общая теория и её практическое применение 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3785143
求助须知:如何正确求助?哪些是违规求助? 3330552
关于积分的说明 10247087
捐赠科研通 3045973
什么是DOI,文献DOI怎么找? 1671801
邀请新用户注册赠送积分活动 800834
科研通“疑难数据库(出版商)”最低求助积分说明 759691