Enhanced skin burn assessment through transfer learning: a novel framework for human tissue analysis

学习迁移 人工智能 严重烧伤 深度学习 计算机科学 人气 机器学习 卷积神经网络 医学 重症监护医学 外科 心理学 社会心理学
作者
Madhur Nagrath,Ashutosh Kumar Sahu,Nancy Jangid,Meghna Sharma,Poonam Chaudhary
出处
期刊:Journal of Medical Engineering & Technology [Informa]
卷期号:47 (5): 288-297 被引量:1
标识
DOI:10.1080/03091902.2024.2327459
摘要

Visual inspection is the typical way for evaluating burns, due to the rising occurrence of burns globally, visual inspection may not be sufficient to detect skin burns because the severity of burns can vary and some burns may not be immediately apparent to the naked eye. Burns can have catastrophic and incapacitating effects and if they are not treated on time can cause scarring, organ failure, and even death. Burns are a prominent cause of considerable morbidity, but for a variety of reasons, traditional clinical approaches may struggle to effectively predict the severity of burn wounds at an early stage. Since computer-aided diagnosis is growing in popularity, our proposed study tackles the gap in artificial intelligence research, where machine learning has received a lot of attention but transfer learning has received less attention. In this paper, we describe a method that makes use of transfer learning to improve the performance of ML models, showcasing its usefulness in diverse applications. The transfer learning approach estimates the severity of skin burn damage using the image data of skin burns and uses the results to improve future methods. The DL technique consists of a basic CNN and seven distinct transfer learning model types. The photos are separated into those displaying first, second, and third-degree burns as well as those showing healthy skin using a fully connected feed-forward neural network. The results demonstrate that the accuracy of 93.87% for the basic CNN model which is significantly lower, with the VGG-16 model achieving the greatest accuracy at 97.43% and being followed by the DenseNet121 model at 96.66%. The proposed approach based on CNN and transfer learning techniques are tested on datasets from Kaggle 2022 and Maharashtra Institute of Technology open-school medical repository datasets that are clubbed together. The suggested CNN-based approach can assist healthcare professionals in promptly and precisely assessing burn damage, resulting in appropriate therapies and greatly minimising the detrimental effects of burn injuries.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
汪蔓蔓关注了科研通微信公众号
刚刚
Akim应助dove00采纳,获得10
1秒前
Water发布了新的文献求助10
1秒前
1秒前
张鑫发布了新的文献求助10
2秒前
LDD完成签到,获得积分10
2秒前
2秒前
迷人紫寒完成签到,获得积分10
2秒前
2秒前
在水一方应助涅爹采纳,获得10
2秒前
豆豆发布了新的文献求助10
3秒前
3秒前
3秒前
白白嫩嫩完成签到,获得积分10
3秒前
4秒前
兔子发布了新的文献求助10
4秒前
tan发布了新的文献求助10
4秒前
烟花应助兴奋芷采纳,获得10
5秒前
tatawo28完成签到 ,获得积分10
5秒前
5秒前
伯赏无极发布了新的文献求助10
5秒前
5秒前
6秒前
6秒前
azkl发布了新的文献求助10
7秒前
三木发布了新的文献求助10
7秒前
小二郎应助安谢采纳,获得10
7秒前
体贴紫发布了新的文献求助10
7秒前
lyznbhh发布了新的文献求助10
7秒前
zhangzhuopu发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
大气的吐司完成签到,获得积分20
8秒前
简单花花发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
123456发布了新的文献求助10
10秒前
Dannerys完成签到 ,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 800
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Antihistamine substances. XXII; Synthetic antispasmodics. IV. Basic ethers derived from aliphatic carbinols and α-substituted benzyl alcohols 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5430023
求助须知:如何正确求助?哪些是违规求助? 4543319
关于积分的说明 14186314
捐赠科研通 4461414
什么是DOI,文献DOI怎么找? 2446146
邀请新用户注册赠送积分活动 1437342
关于科研通互助平台的介绍 1414359