化学
分子动力学
电负性
分子
反应性(心理学)
亲核细胞
分子结合
电泳剂
钙粘蛋白
计算化学
生物化学
有机化学
医学
替代医学
病理
细胞
催化作用
作者
Mahboobeh Eslami,Navid Nezafat,Sahar Khajeh,Zohreh Mostafavi‐Pour,Samaneh Bagheri Novir,Manica Negahdaripour,Younes Ghasemi,Vahid Razban
标识
DOI:10.1080/07391102.2018.1424035
摘要
Due to the considerable role of N-cadherin in cancer metastasis, tumor growth, and progression, inhibition of this protein has been highly regarded in recent years. Although ADH-1 has been known as an appropriate inhibitor of N-cadherin in clinical trials, its chemical nature and binding mode with N-cadherin have not been precisely specified yet. Accordingly, in this study, quantum mechanics calculations were used to investigate the chemical nature of ADH-1. These calculations clarify the molecular properties of ADH-1 and determine its reactive sites. Based on the results, the oxygen atoms are suitable for electrophilic reactivity, while the hydrogen atoms that are connected to nitrogen atoms are the favorite sites for nucleophilic reactivity. The higher electronegativity of the oxygen atoms makes them the most reactive portions in this molecule. Molecular docking and molecular dynamics (MD) simulation have also been applied to specify the binding mode of ADH-1 with N-cadherin and determine the important residues of N-cadherin involving in the interaction with ADH-1. Moreover, the verified model by MD simulation has been studied to extract the free energy value and find driving forces. These calculations and molecular electrostatic potential map of ADH-1 indicated that hydrophobic and electrostatic interactions are almost equally involved in the implantation of ADH-1 in the N-cadherin binding site. The presented results not only enable a closer examination of N-cadherin in complex with ADH-1 molecule, but also are very beneficial in designing new inhibitors for N-cadherin and can help to save time and cost in this field.
科研通智能强力驱动
Strongly Powered by AbleSci AI