A review of polymer electrolyte membrane fuel cell durability for vehicular applications: Degradation modes and experimental techniques

耐久性 电解质 聚合物 材料科学 质子交换膜燃料电池 燃料电池 化学工程 降级(电信) 化学 复合材料 工程类 电气工程 电极 生物化学 物理化学
作者
Jian Zhao,Xianguo Li
出处
期刊:Energy Conversion and Management [Elsevier BV]
卷期号:199: 112022-112022 被引量:336
标识
DOI:10.1016/j.enconman.2019.112022
摘要

Abstract Durability is one of the most significant technical barriers to successful commercialization of polymer electrolyte membrane (PEM) fuel cells for practical vehicular applications. It is determined by the aging (degradation) and malfunction of various components during the long-term operation. Therefore, understanding the mechanisms of degradation modes in different components is crucial to the development of high-performing and long-lasting PEM fuel cells. In this review article, the critical degradation modes in major cell components, including membranes, catalyst layers, gas diffusion layers, and distribution plates, are comprehensively reviewed and analyzed, and the potential causes are described. Advanced experimental techniques to investigate the PEM fuel cell degradation modes reported in literature include steady-state durability tests and accelerated stress tests (ASTs). The steady-state durability test is straightforward but time-consuming and costly; therefore, ASTs are often applied to accelerate durability testing. For comparable results among different research studies, the experimental protocols and conditions have to be consistent, and the details of these experimental techniques are systematically reviewed in this article. The experimental results with a focus on the degradation modes, degradation rate, and test time of the PEM fuel cells have been reported. Finally, in order to understand the root causes of degradation modes and to develop the mitigation strategies, ex-situ ASTs in literature have been reviewed, including the effects of cyclic temperature, humidity, water wet-dry, freeze-thaw, clamping stress, and vibration operations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
骆丹妗完成签到,获得积分10
1秒前
1秒前
香蕉大船完成签到,获得积分10
1秒前
mulidexin2021发布了新的文献求助10
1秒前
cc发布了新的文献求助30
1秒前
烟花应助weiwei采纳,获得10
2秒前
mak关闭了mak文献求助
3秒前
3秒前
3秒前
许某希完成签到,获得积分10
3秒前
摇摇七喜完成签到,获得积分20
3秒前
MAKEYF完成签到 ,获得积分10
4秒前
木光发布了新的文献求助10
5秒前
宋一鸣发布了新的文献求助30
5秒前
传奇3应助mnm采纳,获得10
6秒前
6秒前
英俊的铭应助自然沛菡采纳,获得10
7秒前
8秒前
8秒前
milk发布了新的文献求助10
9秒前
9秒前
9秒前
酷波er应助魏伯安采纳,获得10
10秒前
10秒前
万能图书馆应助贪玩小小采纳,获得10
12秒前
许某希发布了新的文献求助10
12秒前
12秒前
mulidexin2021完成签到,获得积分10
12秒前
小鱼发布了新的文献求助10
13秒前
骆丹妗发布了新的文献求助10
14秒前
我是老大应助程科浩采纳,获得10
14秒前
罗磊发布了新的文献求助10
15秒前
坚强雁发布了新的文献求助10
16秒前
华仔应助111采纳,获得10
16秒前
17秒前
cc完成签到 ,获得积分10
17秒前
小奕应助称心寒松采纳,获得10
17秒前
17秒前
在写了发布了新的文献求助10
17秒前
17秒前
高分求助中
诺和针® 32G 4mm 说明书(2023年2月23日) 1000
Electron microscopy study of magnesium hydride (MgH2) for Hydrogen Storage 1000
Machine Learning in Chemistry The Impact of Artificial Intelligence 500
生物降解型栓塞微球市场(按产品类型、应用和最终用户)- 2030 年全球预测 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Quantum Computing for Quantum Chemistry 500
Thermal Expansion of Solids (CINDAS Data Series on Material Properties, v. I-4) 470
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3899220
求助须知:如何正确求助?哪些是违规求助? 3443909
关于积分的说明 10832274
捐赠科研通 3168611
什么是DOI,文献DOI怎么找? 1750721
邀请新用户注册赠送积分活动 846277
科研通“疑难数据库(出版商)”最低求助积分说明 789096