Design of a novel interfacial enhanced GO-PA/APVC nanofiltration membrane with stripe-like structure

界面聚合 纳滤 化学工程 材料科学 聚合 膜结构 海水淡化 薄膜复合膜 高分子化学 聚酰胺 化学 反渗透 聚合物 复合材料 单体 工程类 生物化学
作者
Yang Qin,Hailiang Liu,Yueming Liu,Mingxing Chen,Kaikai Chen,Yan Huang,Changfa Xiao
出处
期刊:Journal of Membrane Science [Elsevier BV]
卷期号:604: 118064-118064 被引量:48
标识
DOI:10.1016/j.memsci.2020.118064
摘要

Abstract New-style thin film composite nanofiltration (TFC NF) membrane with a stripe-like surface structure, superior interfacial bonding, expected permeability and antifouling performance was successfully fabricated via interfacial polymerization. The aminated polyvinyl chloride (APVC) membrane prepared by amination reaction of polyvinyl chloride (PVC) with triethylenetetramine (TETA) was used as the support layer. The new graphene oxide-polyamide (GO-PA) selective layer was formed by adding graphene oxide (GO) to the aqueous solution to participate in the interfacial polymerization process. The effects of amination modification of PVC substrate membrane and addition of GO during the interfacial polymerization on the structure and performances of the TFC NF membranes were studied. The results indicated that both of the amine group on the surface of the APVC membrane and GO participated in the interfacial polymerization, which endowed the GO-PA/APVC membrane with a new-style stripe-like surface structure and a thicker, gradually looser cross-sectional structure. Meanwhile, the effective desalination active layer of the GO-PA/APVC membrane was much thinner than that of the PA/APVC membrane. The special structure was beneficial to accelerate the speed of water transmission and effectively overcome the trade-off effect during the desalination process. Therefore, the water permeability of GO-PA/APVC membrane was improved more than 60% while the salt rejection remained stable compared with PA/APVC membrane. Moreover, the GO-PA/APVC membrane exhibited superior interfacial bonding and antifouling properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Chenly完成签到,获得积分10
刚刚
3秒前
lhh完成签到,获得积分10
4秒前
5秒前
圈圈发布了新的文献求助10
6秒前
7秒前
8秒前
天天快乐应助风中的尔曼采纳,获得10
9秒前
迫切发布了新的文献求助10
10秒前
王震完成签到,获得积分10
10秒前
11秒前
阿碧完成签到 ,获得积分10
12秒前
郑同学完成签到,获得积分10
12秒前
若水完成签到 ,获得积分10
13秒前
Aqib完成签到,获得积分10
13秒前
fouli发布了新的文献求助200
13秒前
14秒前
JoySue发布了新的文献求助10
15秒前
机灵的一笑完成签到,获得积分10
16秒前
优秀柔关注了科研通微信公众号
17秒前
17秒前
左丘忻发布了新的文献求助10
20秒前
NexusExplorer应助Monet采纳,获得10
22秒前
sciscisci发布了新的文献求助10
23秒前
24秒前
26秒前
叶志涛发布了新的文献求助10
27秒前
infinite完成签到,获得积分10
27秒前
轻松冷亦完成签到,获得积分10
29秒前
JoySue完成签到,获得积分20
29秒前
桐桐应助老10采纳,获得10
30秒前
帮主哥哥应助ltt123采纳,获得20
32秒前
37秒前
37秒前
轻松冷亦发布了新的文献求助10
41秒前
xqq完成签到,获得积分10
41秒前
41秒前
RyanNeo发布了新的文献求助10
43秒前
43秒前
优秀柔发布了新的文献求助10
43秒前
高分求助中
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
非光滑分析与控制理论 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Wh-exclamatives, Imperatives and Wh-questions 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3827058
求助须知:如何正确求助?哪些是违规求助? 3369299
关于积分的说明 10455578
捐赠科研通 3088953
什么是DOI,文献DOI怎么找? 1699543
邀请新用户注册赠送积分活动 817382
科研通“疑难数据库(出版商)”最低求助积分说明 770208