Assessment of Shaft Surface Structures on the Tribological Behavior of Journal Bearings by Physical and Virtual Simulation

摩擦学 方位(导航) 摩擦学 铸铁 材料科学 机械工程 凸轮轴 滚柱轴承 冶金 结构工程 复合材料 工程类 计算机科学 润滑 人工智能
作者
Michael Pusterhofer,Florian Summer,M.R. Maier,Florian Grün
出处
期刊:Lubricants [Multidisciplinary Digital Publishing Institute]
卷期号:8 (1): 8-8 被引量:9
标识
DOI:10.3390/lubricants8010008
摘要

Optimizing the surface topography of cast iron crankshafts offers the opportunity to use this material as an alternative to steel in high-performance combustion engines. In the past, this was not possible due to the higher wear on bearing shells and the higher friction losses in relation to forged steel shafts. In order to find an optimized shaft micro topography, the friction and wear behavior of steel and cast iron shafts with different surface treatments were compared to each other, using a combined physical (experimental) and a virtual (computational) simulation approach. The experiments were carried out with a rotary tribometer using a journal bearing test configuration with the possibility to test real-life bearing shells and shaft specimens, manufactured from real-life crankshafts. In the experiments, a polished steel shaft with low bearing wear was effective. The optimization of cast iron crankshafts by a novel surface treatment showed a significant reduction of bearing wear in relation to the classical surface finishing procedures of cast iron shafts. A computational simulation approach, considering the real-life micro topography by using the Navier–Stokes equations for the calculation of micro hydrodynamics, supports the assessment of fluid friction. The virtual simulation shows, in accordance to the experimental results, only a minor influence of the investigated shaft topographies on the fluid friction. Further optimization of shaft surfaces for journal bearing systems seems possible only by the usage of patterned micro topographies.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
量子星尘发布了新的文献求助10
2秒前
李爱国应助哎呦采纳,获得10
2秒前
CipherSage应助fm采纳,获得10
4秒前
6秒前
科研鬼才发布了新的文献求助10
7秒前
zym完成签到,获得积分10
7秒前
lili完成签到 ,获得积分10
8秒前
8秒前
谭慧剑完成签到 ,获得积分20
10秒前
梅溪湖的提词器完成签到,获得积分10
10秒前
优美猕猴桃完成签到 ,获得积分10
12秒前
梦及深海完成签到,获得积分20
12秒前
luminous完成签到 ,获得积分10
13秒前
科研通AI2S应助饶子阳采纳,获得30
13秒前
huan完成签到,获得积分10
15秒前
15秒前
15秒前
WX完成签到 ,获得积分10
17秒前
谭慧剑关注了科研通微信公众号
17秒前
17秒前
bbihk完成签到,获得积分10
17秒前
余呀余完成签到 ,获得积分10
18秒前
科研通AI5应助科研鬼才采纳,获得10
20秒前
量子星尘发布了新的文献求助10
20秒前
Ciel发布了新的文献求助10
20秒前
鹅毛大雪发布了新的文献求助10
21秒前
Hello应助小小哒采纳,获得30
21秒前
ding应助含蓄的赛君采纳,获得10
22秒前
22秒前
852应助科研通管家采纳,获得10
24秒前
昏睡的蟠桃应助科研通管家采纳,获得150
24秒前
Akim应助科研通管家采纳,获得10
24秒前
科研通AI6应助科研通管家采纳,获得10
24秒前
香蕉觅云应助科研通管家采纳,获得10
24秒前
eric888应助科研通管家采纳,获得30
24秒前
Orange应助科研通管家采纳,获得10
24秒前
天天快乐应助科研通管家采纳,获得10
24秒前
l玖应助科研通管家采纳,获得150
24秒前
Jasper应助科研通管家采纳,获得10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Irregular Migration in Southeast Asia: Contemporary Barriers to Regularization and Healthcare 2000
Acute Mountain Sickness 2000
Cowries - A Guide to the Gastropod Family Cypraeidae 1200
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5057136
求助须知:如何正确求助?哪些是违规求助? 4282531
关于积分的说明 13345908
捐赠科研通 4099525
什么是DOI,文献DOI怎么找? 2244328
邀请新用户注册赠送积分活动 1250382
关于科研通互助平台的介绍 1180864