A deep learning approach to automate high-resolution blood vessel reconstruction on computerised tomography images with or without the use of contrast agents

医学 分割 放射科 人工智能 腹主动脉瘤 数据集 管腔(解剖学) 感兴趣区域 动脉瘤 外科 计算机科学
作者
Anirudh Chandrashekar,Ashok Handa,Natesh Shivakumar,Pierfrancesco Lapolla,Vicente Grau,Regent Lee
出处
期刊:European Heart Journal [Oxford University Press]
卷期号:41 (Supplement_2) 被引量:1
标识
DOI:10.1093/ehjci/ehaa946.0154
摘要

Abstract Background Existing methods to reconstruct vascular structures from a computed tomography (CT) angiogram rely on injection of intravenous contrast to enhance the radio-density within the vessel lumen. Pathological changes present within the blood lumen, vessel wall or a combination of both prevent accurate 3D reconstruction. In the example of aortic aneurysmal (AAA) disease, a blood clot or thrombus adherent to the aortic wall within the expanding aneurysmal sac is present in 95% of cases. These deformations prevent the automatic extraction of vital clinically relevant information by current methods. Objectives In this study, we utilised deep learning segmentation methods to establish a high-throughput and automated segmentation pipeline for pathological blood vessels (ex. Aortic Aneurysm) in CT images acquired with or without the use of a contrast agent. Methods Twenty-six patients with paired non-contrast and contrast-enhanced CT images were randomly selected from an ethically-approved ongoing study (Ethics Ref 13/SC/0250), manually annotated and used for model training and evaluation (13/13). Data augmentation methods were implemented to diversify the training data set in a ratio of 10:1. We utilised a 3D U-Net with attention gating for both the aortic region-of-interest (ROI) detection and segmentation tasks. Trained architectures were evaluated using the DICE similarity score. Results Inter- and Intra- observer analysis supports the accuracy of the manual segmentations used for model training (intra-class correlation coefficient, “ICC” = 0.995 and 1.00, respective. P<0.001 for both). The performance of our Attention-based U-Net (DICE score: 94.8±0.5%) in extracting both the inner lumen and the outer wall of the aortic aneurysm from CT angiograms (CTA) was compared against a generic 3-D U-Net (DICE score: 89.5±0.6%) and displayed superior results (p<0.01). Fig 1A depicts the implementation of this network architecture within the aortic segmentation pipeline (automated ROI detection and aortic segmentation). This pipeline has allowed accurate and efficient extraction of the entire aortic volume from both contrast-enhanced CTA (DICE score: 95.3±0.6%) and non-contrast CT (DICE score: 93.2±0.7%) images. Fig 1B illustrates the model output alongside the labelled ground truth segmentation for the pathological aneurysmal region; only minor differences are visually discernible (coloured boxes). Conclusion We developed a novel automated pipeline for high resolution reconstruction of blood vessels using deep learning approaches. This pipeline enables automatic extraction of morphologic features of blood vessels and can be applied for research and potentially for clinical use. Automated Segmentation of Blood Vessels Funding Acknowledgement Type of funding source: Foundation. Main funding source(s): University of Oxford Medical Research Fund, John Fell Fund
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
CodeCraft应助高木同学采纳,获得10
刚刚
高级后勤完成签到,获得积分10
刚刚
Auston_zhong应助lsy采纳,获得10
刚刚
故酒应助张可采纳,获得10
刚刚
喵喵完成签到,获得积分10
1秒前
贾小闲完成签到,获得积分10
1秒前
研友_n0kjPL完成签到,获得积分0
3秒前
咕咕完成签到,获得积分10
3秒前
静静子完成签到,获得积分10
3秒前
tzjz_zrz完成签到,获得积分10
4秒前
完美世界应助科研通管家采纳,获得10
4秒前
大个应助科研通管家采纳,获得10
4秒前
4秒前
共享精神应助科研通管家采纳,获得10
4秒前
5秒前
TARGET完成签到 ,获得积分10
5秒前
温暖的鸿完成签到 ,获得积分10
6秒前
皇帝的床帘完成签到,获得积分10
6秒前
海的海完成签到 ,获得积分10
6秒前
饱满的小懒虫完成签到,获得积分10
7秒前
温柔的沉鱼完成签到,获得积分10
8秒前
蓝豆子完成签到 ,获得积分10
8秒前
昵称什么的不重要啦完成签到 ,获得积分10
8秒前
萧秋灵完成签到,获得积分10
8秒前
wsy完成签到,获得积分10
9秒前
科研通AI5应助gaga采纳,获得10
9秒前
Lazarus_x完成签到,获得积分10
9秒前
wy0409完成签到,获得积分10
12秒前
xjtuwang0618完成签到,获得积分10
16秒前
甜甜圈完成签到,获得积分10
18秒前
斯文败类应助Asphyxia采纳,获得10
18秒前
一苇以航完成签到 ,获得积分10
18秒前
18秒前
RYK完成签到 ,获得积分10
19秒前
RATHER完成签到,获得积分10
21秒前
xiaoruixue完成签到,获得积分10
22秒前
时尚的梦曼完成签到,获得积分10
22秒前
fishss完成签到,获得积分10
23秒前
东东完成签到,获得积分10
23秒前
老朱完成签到,获得积分10
24秒前
高分求助中
Technologies supporting mass customization of apparel: A pilot project 600
Izeltabart tapatansine - AdisInsight 500
Chinesen in Europa – Europäer in China: Journalisten, Spione, Studenten 500
Arthur Ewert: A Life for the Comintern 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi // Kurt Werner Radtke 500
Two Years in Peking 1965-1966: Book 1: Living and Teaching in Mao's China // Reginald Hunt 500
Epigenetic Drug Discovery 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3815941
求助须知:如何正确求助?哪些是违规求助? 3359450
关于积分的说明 10402612
捐赠科研通 3077262
什么是DOI,文献DOI怎么找? 1690255
邀请新用户注册赠送积分活动 813693
科研通“疑难数据库(出版商)”最低求助积分说明 767743