Rational Design of Rhodium–Iridium Alloy Nanoparticles as Highly Active Catalysts for Acidic Oxygen Evolution

析氧 过电位 合理设计 催化作用 电解质 纳米颗粒 化学工程 合金 电化学 材料科学 分解水 密度泛函理论 无机化学 化学 纳米技术 电极 物理化学 冶金 计算化学 光催化 有机化学 工程类
作者
Hongyu Guo,Zhiwei Fang,Hao Li,Desiree Fernandez,Graeme Henkelman,Simon M. Humphrey,Guihua Yu
出处
期刊:ACS Nano [American Chemical Society]
卷期号:13 (11): 13225-13234 被引量:140
标识
DOI:10.1021/acsnano.9b06244
摘要

The oxygen evolution reaction (OER) is pivotal for renewable energy conversion and storage devices, such as water electrolyzers and rechargeable metal-air batteries. However, the rational design of electrocatalysts with suitably high efficiencies and stabilities in strongly acidic electrolytes remains a significant challenge. Here, we show the demonstration of sub-10 nm, composition-tunable Rh-Ir alloy nanoparticles (NPs) prepared using a scalable microwave-assisted method as superior acidic OER catalysts. The OER activities showed a volcano-shaped dependence on Ir composition, with Ir-rich NPs (Ir ≥ 51%) achieving better OER performance than pure Ir NPs, as reflected by lower overpotentials and higher mass activities. Most significantly, Rh22Ir78 NPs achieved a maximum mass activity of 1.17 A mg-1Ir at a 300 mV overpotential in 0.5 M H2SO4, which corresponds to a 3-fold enhancement relative to pure Ir NPs, making it one of the most active reported OER catalysts under acidic conditions. Density functional theory calculations reveal that owing to the synergy of ensemble and electronic effects by alloying a small amount of Rh with Ir, the binding energy difference of the O and OOH intermediates is reduced, leading to faster kinetics and enhanced OER activity. Furthermore, Rh-Ir alloy NPs demonstrated excellent durability in strongly acidic electrolyte. This work not only provides fundamental understandings relating to composition-electrochemical performance relationships but also represents the rational design of highly efficient OER electrocatalysts for applications in acidic media.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研包完成签到,获得积分10
1秒前
2秒前
学术蝗虫完成签到,获得积分10
4秒前
希望天下0贩的0应助77采纳,获得10
4秒前
伍寒烟发布了新的文献求助10
6秒前
7秒前
t通应助科研通管家采纳,获得10
8秒前
NexusExplorer应助科研通管家采纳,获得10
8秒前
8秒前
李健应助科研通管家采纳,获得10
8秒前
搜集达人应助科研通管家采纳,获得30
8秒前
科研通AI5应助科研通管家采纳,获得10
8秒前
田様应助科研通管家采纳,获得10
8秒前
无花果应助科研通管家采纳,获得20
8秒前
Hello应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
大模型应助科研通管家采纳,获得10
9秒前
Jasper应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
酷波er应助科研通管家采纳,获得10
9秒前
小二郎应助科研通管家采纳,获得10
9秒前
充电宝应助科研通管家采纳,获得20
9秒前
9秒前
9秒前
9秒前
11秒前
叫我益达完成签到,获得积分10
11秒前
hyl发布了新的文献求助10
12秒前
小二郎应助amonke007采纳,获得10
13秒前
在水一方应助激情的一斩采纳,获得10
14秒前
杨冰发布了新的文献求助10
16秒前
有风的地方完成签到 ,获得积分10
16秒前
Jin完成签到,获得积分10
18秒前
77完成签到,获得积分10
18秒前
神勇的人雄完成签到,获得积分10
20秒前
25秒前
啦啦啦发布了新的文献求助10
26秒前
yang发布了新的文献求助10
29秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 3000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
Maneuvering of a Damaged Navy Combatant 650
基于CZT探测器的128通道能量时间前端读出ASIC设计 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3777347
求助须知:如何正确求助?哪些是违规求助? 3322714
关于积分的说明 10211237
捐赠科研通 3038044
什么是DOI,文献DOI怎么找? 1667051
邀请新用户注册赠送积分活动 797952
科研通“疑难数据库(出版商)”最低求助积分说明 758098