MS-IDF: A Software Tool for Nontargeted Identification of Endogenous Metabolites after Chemical Isotope Labeling Based on a Narrow Mass Defect Filter

代谢组学 化学 质谱法 色谱法 软件 滤波器(信号处理) 计算机科学 计算机视觉 程序设计语言
作者
Suping Wang,Xiaojuan Jiang,Rong Ding,Binbin Chen,Haiyan Lyu,Junyang Liu,Chunyan Zhu,Rong Shen,Jiayun Chen,Hong Yun,Yun‐Long Wu,Jiyang Dong,Caisheng Wu
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (7): 3194-3202 被引量:7
标识
DOI:10.1021/acs.analchem.1c04719
摘要

Chemical isotope labeling liquid chromatography mass spectrometry (LC-MS) is an emerging metabolomic strategy for the quantification and characterization of small molecular compounds in biological samples. However, its subsequent data analysis is not straightforward due to a large amount of data produced and interference of biological matrices. In order to improve the efficiency of searching and identification of target endogenous metabolites, a new software tool for nontargeted metabolomics data processing called MS-IDF was developed based on the principle of a narrow mass defect filter. The developed tool provided two function modules, including IsoFinder and MDFinder. The IsoFinder function module applied a conventional peak extraction method by using a fixed mass differences between the heavy and light labels and by the alignment of chromatographic retention time (RT). On the other hand, MDFinder was designed to incorporate the accurate mass defect differences between or among stable isotopes in the peak extraction process. By setting an appropriate filter interval, the target metabolites can be efficiently screened out while eliminating interference. Notably, the present results showed that the efficiency in compound identification using the new MDFinder module was nearly doubled as compared to the conventional IsoFinder method (an increase from 259 to 423 compounds). The Matlab codes of the developed MS-IDF software are available from github at https://github.com/jydong2018/MS_IDF. Based on the MS-IDF software tool, a novel and effective approach from nontargeted to targeted metabolomics research was developed and applied to the exploration of potential primary amine biomarkers in patients with schizophrenia. With this approach, potential biomarkers, including N,N-dimethylglycine, S-adenosine-l-methionine, dl-homocysteine, and spermidine, were discovered.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
HZY完成签到,获得积分10
刚刚
只A不B应助starry采纳,获得30
刚刚
刚刚
孜然西瓜发布了新的文献求助10
1秒前
大个应助江月年采纳,获得10
2秒前
小蘑菇应助虚拟的惜筠采纳,获得10
2秒前
饿哭了塞发布了新的文献求助10
2秒前
优秀冰真完成签到,获得积分10
2秒前
3秒前
QSJ发布了新的文献求助10
3秒前
奋斗蜗牛完成签到,获得积分10
4秒前
烟花应助尹雪儿采纳,获得10
4秒前
谨慎乌完成签到,获得积分10
5秒前
5秒前
jjleborn发布了新的文献求助10
5秒前
善学以致用应助万历采纳,获得10
6秒前
LLxiaolong完成签到,获得积分10
6秒前
7秒前
耍酷的白玉完成签到,获得积分10
7秒前
科研通AI5应助积极的惜萱采纳,获得10
8秒前
wzppp发布了新的文献求助10
9秒前
田様应助helloworld采纳,获得10
9秒前
kaka发布了新的文献求助10
9秒前
10秒前
搜集达人应助H1采纳,获得10
10秒前
莫之玉完成签到 ,获得积分20
10秒前
唯爱薇儿完成签到,获得积分10
10秒前
11秒前
天天快乐应助贺知什么书采纳,获得10
11秒前
neko完成签到,获得积分10
11秒前
12秒前
凯凯完成签到,获得积分10
12秒前
12秒前
Serendipity发布了新的文献求助10
12秒前
12秒前
晴心发布了新的文献求助10
13秒前
13秒前
13秒前
14秒前
冰魂应助负责的方盒采纳,获得10
14秒前
高分求助中
Encyclopedia of Mathematical Physics 2nd edition 888
Technologies supporting mass customization of apparel: A pilot project 600
Nonrandom distribution of the endogenous retroviral regulatory elements HERV-K LTR on human chromosome 22 500
Hydropower Nation: Dams, Energy, and Political Changes in Twentieth-Century China 500
Introduction to Strong Mixing Conditions Volumes 1-3 500
Optical and electric properties of monocrystalline synthetic diamond irradiated by neutrons 320
共融服務學習指南 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3805912
求助须知:如何正确求助?哪些是违规求助? 3350817
关于积分的说明 10351267
捐赠科研通 3066685
什么是DOI,文献DOI怎么找? 1684088
邀请新用户注册赠送积分活动 809298
科研通“疑难数据库(出版商)”最低求助积分说明 765432