清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

APASL‐ACLF Research Consortium–Artificial Intelligence (AARC‐AI) model precisely predicts outcomes in acute‐on‐chronic liver failure patients

医学 肌酐 曲线下面积 接收机工作特性 败血症 内科学
作者
Nipun Verma,Ashok Choudhury,Virendra Singh,Ajay Duseja,Manum Al‐Mahtab,Harshad Devarbhavi,C. E. Eapen,Ashish Goel,Qin Ning,Zhongping Duan,Saeed Hamid,Wasim Jafri,Amna S. Butt,Akash Shukla,Soek‐Siam Tan,Dong Joon Kim,Jinhua Hu,Ajit Sood,Omesh Goel,Vandana Midha
出处
期刊:Liver International [Wiley]
卷期号:43 (2): 442-451 被引量:10
标识
DOI:10.1111/liv.15361
摘要

We hypothesized that artificial intelligence (AI) models are more precise than standard models for predicting outcomes in acute-on-chronic liver failure (ACLF).We recruited ACLF patients between 2009 and 2020 from APASL-ACLF Research Consortium (AARC). Their clinical data, investigations and organ involvement were serially noted for 90-days and utilized for AI modelling. Data were split randomly into train and validation sets. Multiple AI models, MELD and AARC-Model, were created/optimized on train set. Outcome prediction abilities were evaluated on validation sets through area under the curve (AUC), accuracy, sensitivity, specificity and class precision.Among 2481 ACLF patients, 1501 in train set and 980 in validation set, the extreme gradient boost-cross-validated model (XGB-CV) demonstrated the highest AUC in train (0.999), validation (0.907) and overall sets (0.976) for predicting 30-day outcomes. The AUC and accuracy of the XGB-CV model (%Δ) were 7.0% and 6.9% higher than the standard day-7 AARC model (p < .001) and 12.8% and 10.6% higher than the day 7 MELD for 30-day predictions in validation set (p < .001). The XGB model had the highest AUC for 7- and 90-day predictions as well (p < .001). Day-7 creatinine, international normalized ratio (INR), circulatory failure, leucocyte count and day-4 sepsis were top features determining the 30-day outcomes. A simple decision tree incorporating creatinine, INR and circulatory failure was able to classify patients into high (~90%), intermediate (~60%) and low risk (~20%) of mortality. A web-based AARC-AI model was developed and validated twice with optimal performance for 30-day predictions.The performance of the AARC-AI model exceeds the standard models for outcome predictions in ACLF. An AI-based decision tree can reliably undertake severity-based stratification of patients for timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小白白完成签到 ,获得积分10
刚刚
大方的笑萍完成签到 ,获得积分10
6秒前
舒适的天奇完成签到 ,获得积分10
32秒前
laber完成签到,获得积分0
53秒前
sowhat完成签到 ,获得积分10
56秒前
cdercder应助科研通管家采纳,获得20
1分钟前
生动的不乐完成签到,获得积分20
2分钟前
SYLH应助生动的不乐采纳,获得30
2分钟前
2分钟前
Wen3197312602发布了新的文献求助10
2分钟前
席江海完成签到,获得积分10
2分钟前
华仔应助紧张的海露采纳,获得10
2分钟前
爱窦完成签到 ,获得积分10
2分钟前
新奇完成签到 ,获得积分10
3分钟前
heija完成签到,获得积分10
3分钟前
生信小菜鸟完成签到 ,获得积分10
3分钟前
尊敬的凝丹完成签到 ,获得积分10
3分钟前
xu完成签到 ,获得积分10
4分钟前
青出于蓝蔡完成签到,获得积分10
4分钟前
4分钟前
长生完成签到 ,获得积分10
4分钟前
鲁卓林完成签到,获得积分10
4分钟前
zz完成签到 ,获得积分10
4分钟前
ding应助十六夜采纳,获得10
4分钟前
Echoheart完成签到,获得积分10
4分钟前
PDIF-CN2完成签到,获得积分10
4分钟前
sjyu1985完成签到 ,获得积分10
4分钟前
斯文的傲珊完成签到,获得积分10
4分钟前
4分钟前
郭星星完成签到,获得积分10
5分钟前
HUANWANG发布了新的文献求助10
5分钟前
孤独剑完成签到 ,获得积分10
5分钟前
科研通AI5应助HUANWANG采纳,获得200
5分钟前
大椒完成签到 ,获得积分10
5分钟前
vbnn完成签到 ,获得积分10
5分钟前
番茄酱完成签到 ,获得积分10
5分钟前
柒八染完成签到 ,获得积分10
5分钟前
机灵雨完成签到 ,获得积分10
6分钟前
刘丰完成签到 ,获得积分10
6分钟前
hss完成签到 ,获得积分10
6分钟前
高分求助中
Applied Survey Data Analysis (第三版, 2025) 800
Narcissistic Personality Disorder 700
Assessing and Diagnosing Young Children with Neurodevelopmental Disorders (2nd Edition) 700
The Elgar Companion to Consumer Behaviour and the Sustainable Development Goals 540
Images that translate 500
Transnational East Asian Studies 400
Mapping the Stars: Celebrity, Metonymy, and the Networked Politics of Identity 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3843282
求助须知:如何正确求助?哪些是违规求助? 3385538
关于积分的说明 10540738
捐赠科研通 3106138
什么是DOI,文献DOI怎么找? 1710900
邀请新用户注册赠送积分活动 823818
科研通“疑难数据库(出版商)”最低求助积分说明 774308