A flight test based deep learning method for transition heat flux prediction in hypersonic flow

雷诺平均Navier-Stokes方程 热流密度 空气动力学 高超音速 计算流体力学 机械 人工神经网络 湍流 物理 试验数据 航空航天工程 模拟 计算机科学 人工智能 传热 工程类 程序设计语言
作者
Haijie Ren,Sheng Wang,Xianxu Yuan,Jianqiang Chen,Yifeng Zhang,Xinghao Xiang
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:34 (5) 被引量:13
标识
DOI:10.1063/5.0093438
摘要

Computational fluid dynamics predictions based on machine learning methods have become an important area of turbulence and transition research. However, the otherwise efficient and low-cost transition models based on Reynolds-averaged Navier–Stokes (RANS) methods have limited capability for dealing with hypersonic conditions, owing to the strong compressibility and multimodal features that are then present. This paper develops an augmented method for transition heat flux prediction. A deep neural network (DNN) is trained using flight test data from the China Aerodynamics Research and Development Center. The subject of the flight test is an inclined blunt cone on which temperature sensors are mounted. The training data consist of RANS solutions and flight test data, with the input being the mean strain/rotation rate tensor from RANS and the output the heat flux values from the flight test. The trained DNN model based on the RANS results can give heat flux values with similar accuracy to those from the flight test. For the blunt cone, the trained DNN model can accurately forecast the heat distribution caused by the Mack mode and the cross-flow transition under various inflow conditions, and the errors in the prediction results are all within 15%. Furthermore, the generalizability of the trained DNN model is also verified on an elliptic cone under different inflow conditions. This paper provides a new transition prediction approach with low computational cost and high accuracy. The proposed method solves the problem that the transition model fails in some working conditions and avoids re-modifying empirical criteria in the RANS model. It has both advantages of a transition model and flight tests and maintains the excellent potential for application.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
爱吃饼干的土拨鼠完成签到,获得积分10
刚刚
满当当发布了新的文献求助10
1秒前
2秒前
归雁完成签到,获得积分10
2秒前
Ava应助啊呀麦克采纳,获得10
3秒前
汉堡包应助PZ采纳,获得10
4秒前
Chemvenus完成签到,获得积分10
4秒前
6秒前
8秒前
9秒前
寄草完成签到,获得积分10
9秒前
上官若男应助阔达的昊强采纳,获得30
9秒前
欣慰白山发布了新的文献求助10
10秒前
12秒前
我睡觉的时候不困完成签到 ,获得积分10
12秒前
葵花籽完成签到,获得积分10
13秒前
dzjin发布了新的文献求助10
14秒前
14秒前
lucky225完成签到,获得积分20
15秒前
丘比特应助甜甜采纳,获得10
15秒前
Hanayu完成签到 ,获得积分10
17秒前
啊呀麦克发布了新的文献求助10
17秒前
17秒前
薛栋潮发布了新的文献求助10
18秒前
谦让洋葱发布了新的文献求助10
19秒前
dzjin完成签到,获得积分10
20秒前
24秒前
zzz发布了新的文献求助10
25秒前
欣慰白山发布了新的文献求助10
27秒前
甜甜发布了新的文献求助10
27秒前
27秒前
酷波er应助zz采纳,获得10
28秒前
阔达的昊强完成签到,获得积分20
31秒前
31秒前
31秒前
33秒前
yang完成签到,获得积分10
33秒前
认真的山芙关注了科研通微信公众号
33秒前
34秒前
kebing发布了新的文献求助10
34秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
Plutonium Handbook 1000
Three plays : drama 1000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Ultra-Wide Bandgap Semiconductor Materials 600
Psychology Applied to Teaching 14th Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4090512
求助须知:如何正确求助?哪些是违规求助? 3629143
关于积分的说明 11505671
捐赠科研通 3341176
什么是DOI,文献DOI怎么找? 1836634
邀请新用户注册赠送积分活动 904578
科研通“疑难数据库(出版商)”最低求助积分说明 822421