Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology

无线电技术 医学 肿瘤科 签名(拓扑) 形态学(生物学) 内科学 放射科 遗传学 生物 几何学 数学
作者
Wenting Tu,Guangyuan Sun,Li Fan,Yun Wang,Yi Xia,Yu Guan,Qiong Li,Di Zhang,Shiyuan Liu,Zhaobin Li
出处
期刊:Lung Cancer [Elsevier BV]
卷期号:132: 28-35 被引量:139
标识
DOI:10.1016/j.lungcan.2019.03.025
摘要

To compare the predictive performance of radiomics signature and CT morphological features for epidermal growth factor receptor (EGFR) mutation status; then further to develop and compare the different predictive models for EGFR mutation in non-small cell lung cancer (NSCLC) patients.This retrospective study involved 404 patients with NSCLC (243 cases in the training cohort and 161 cases in the validation cohort). Radiomics features were extracted from preoperative non-contrast CT images of the entire tumor. Correlations between the EGFR mutation status and candidate predictors were assessed using Mann-Whitney U test or Chi-square test. Unsupervised consensus clustering was used to analyze the representativeness and reduce the redundancy of radiomics features. Multivariable logistic regression analysis was performed to build radiomics signature and develop predictive models of EGFR mutation. ROC curve analysis and Delong test were used to compare the predictive performance among individual features and models.Of the 234 radiomics features, 93 radiomics features with high repeatability and high predictive significance were selected. The radiomics signature, which was built with one histogram and two textural features, showed the best predictive performance (AUC = 0.762 and 0.775 in the training and validation cohort) in comparison with all the clinical characteristics and conventional CT morphological features to differentiate EGFR mutation status (P < 0.05). The integrated model was developed with maximum diameter, location, sex and radiomics signature. In the training and validation cohort, the integrated model showed the most optimal predictive performance (AUC = 0.798, 0.818 in the training and validation cohort) compared with the clinical models.The radiomics signature showed better performance for predicting EGFR mutant than all the clinical and morphological features. Moreover, the integrated model built with radiomics signature, clinical and morphological features outperformed the clinical models, which is helpful for physicians to determine the targeted therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
研友_8y2G0L完成签到,获得积分10
10秒前
复杂的沛儿完成签到 ,获得积分10
11秒前
江漓完成签到 ,获得积分10
15秒前
雪儿完成签到 ,获得积分10
16秒前
alanbike完成签到,获得积分10
22秒前
Hhh完成签到 ,获得积分10
25秒前
现实的俊驰完成签到 ,获得积分10
27秒前
29秒前
最最最发布了新的文献求助10
35秒前
~~~关注了科研通微信公众号
38秒前
笨笨凡松完成签到 ,获得积分10
42秒前
ygg1关注了科研通微信公众号
52秒前
nhzz2023完成签到 ,获得积分10
55秒前
小亮哈哈完成签到,获得积分10
1分钟前
fengxinyu发布了新的文献求助10
1分钟前
如意竺完成签到,获得积分10
1分钟前
aowulan完成签到 ,获得积分10
1分钟前
在水一方应助fengxinyu采纳,获得10
1分钟前
yes完成签到 ,获得积分10
1分钟前
摸鱼主编magazine完成签到,获得积分10
1分钟前
jjy完成签到,获得积分10
1分钟前
华桦子完成签到 ,获得积分10
1分钟前
满意沛槐完成签到 ,获得积分10
1分钟前
小二郎应助最最最采纳,获得10
1分钟前
su完成签到 ,获得积分0
1分钟前
平常安雁完成签到 ,获得积分10
1分钟前
庄怀逸完成签到 ,获得积分10
2分钟前
江三村完成签到 ,获得积分10
2分钟前
魔幻的妖丽完成签到 ,获得积分10
2分钟前
2分钟前
最最最发布了新的文献求助10
2分钟前
喝酸奶不舔盖完成签到 ,获得积分0
2分钟前
pp完成签到 ,获得积分10
2分钟前
2分钟前
sci完成签到 ,获得积分10
2分钟前
聪明花生发布了新的文献求助10
2分钟前
ll完成签到,获得积分10
2分钟前
Cold-Drink-Shop完成签到,获得积分10
2分钟前
瞿人雄完成签到,获得积分10
2分钟前
没心没肺完成签到,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Beauty and Innovation in La Machine Chinoise: Falla, Debussy, Ravel, Roussel 1000
Rapid Review of Electrodiagnostic and Neuromuscular Medicine: A Must-Have Reference for Neurologists and Physiatrists 1000
An overview of orchard cover crop management 800
基于3um sOl硅光平台的集成发射芯片关键器件研究 500
National standards & grade-level outcomes for K-12 physical education 400
Research Handbook on Law and Political Economy Second Edition 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4806858
求助须知:如何正确求助?哪些是违规求助? 4122029
关于积分的说明 12752843
捐赠科研通 3856479
什么是DOI,文献DOI怎么找? 2123397
邀请新用户注册赠送积分活动 1145470
关于科研通互助平台的介绍 1037855