Pattern Recognition Approaches and Computational Systems Tools for Ultra Performance Liquid Chromatography–Mass Spectrometry-Based Comprehensive Metabolomic Profiling and Pathways Analysis of Biological Data Sets

代谢组学 化学 计算生物学 代谢途径 系统生物学 通路分析 系统药理学 药理学 药品 生物化学 新陈代谢 生物 色谱法 基因 基因表达
作者
Xijun Wang,Bo Yang,Hui Sun,Aihua Zhang
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:84 (1): 428-439 被引量:170
标识
DOI:10.1021/ac202828r
摘要

Metabolomics represents an emerging and powerful discipline that provides an accurate and dynamic picture of the phenotype of biosystems through the study of potential metabolites that could be used for therapeutic targets and discovery of new drugs. Metabolomic network construction has led to the integration of metabolites associated with the caused perturbation of multiple pathways. Herein, we present a method for the construction of efficient networks with regard to that Jujuboside B (JuB) protects against insomnia as a case study. UPLC/ESI-SYNAPT-HDMS coupled with pattern recognition methods including PCA, PLS-DA, OPLS-DA, and computational systems analysis were integrated to obtain comprehensive metabolomic profiling and pathways of the large biological data sets. Among the regulated pathways, twelve biomarkers were identified and tryptophan metabolism, phenylalanine, tyrosine, tryptophan biosynthesis, arachidonic acid metabolism, and phenylalanine metabolism related network were acutely perturbed. Results not only supplied a systematic view of the development and progression of insomnia but also were used to analyze the therapeutic effects of JuB, a widely used anti-insomina medicine in clinics. The results showed that JuB administration could provide satisfactory effects on insomnia through partially regulating the perturbed pathway. We have constructed a metabolomic feature network of JuB to protect against insomnia. The most promising use in the near future would be to clarify pathways for the drugs and get biomarkers for these pathways, to help guide testable predictions, provide insights into drug action mechanisms, and enable us to increase research productivity toward metabolomic drug discovery.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助你好采纳,获得10
2秒前
2秒前
ding应助小李博士采纳,获得10
3秒前
打打应助飞飞飞采纳,获得10
5秒前
科目三应助淡定的以寒采纳,获得10
5秒前
量子星尘发布了新的文献求助10
6秒前
luffy0509完成签到,获得积分10
7秒前
Zooey旎旎完成签到,获得积分10
7秒前
7秒前
尊敬秋双完成签到 ,获得积分10
8秒前
华仔应助王一一采纳,获得10
8秒前
9秒前
胡胡胡发布了新的文献求助30
9秒前
浮游应助大气惜寒采纳,获得10
11秒前
12秒前
orixero应助科研任你行采纳,获得10
12秒前
搞怪易形应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
NexusExplorer应助科研通管家采纳,获得10
12秒前
SciGPT应助科研通管家采纳,获得30
12秒前
小朋友发布了新的文献求助10
12秒前
隐形曼青应助科研通管家采纳,获得10
12秒前
鸣笛应助科研通管家采纳,获得10
12秒前
鸣笛应助科研通管家采纳,获得10
13秒前
充电宝应助科研通管家采纳,获得10
13秒前
打打应助科研通管家采纳,获得10
13秒前
Lucas应助科研通管家采纳,获得10
13秒前
Hello应助科研通管家采纳,获得10
13秒前
共享精神应助科研通管家采纳,获得10
13秒前
zbs发布了新的文献求助10
13秒前
情怀应助云谷采纳,获得10
13秒前
ghn123456789完成签到,获得积分10
14秒前
量子星尘发布了新的文献求助10
20秒前
CC完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
shinn发布了新的文献求助10
23秒前
赵明鑫完成签到,获得积分10
24秒前
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4593640
求助须知:如何正确求助?哪些是违规求助? 4006759
关于积分的说明 12406188
捐赠科研通 3684845
什么是DOI,文献DOI怎么找? 2030909
邀请新用户注册赠送积分活动 1064176
科研通“疑难数据库(出版商)”最低求助积分说明 949494