豪斯多夫维数
数学
准周期函数
组合数学
兰姆达
图形
人文学科
物理
数学分析
量子力学
哲学
出处
期刊:Annales de l'I.H.P
[Institute of Mathematical Statistics]
日期:2017-02-01
卷期号:53 (1)
被引量:20
摘要
Let $W_{\\lambda,b}(x)=\\sum_{n=0}^{\\infty}\\lambda^{n}g(b^{n}x)$ where $b\\geq2$ is an integer and $g(u)=\\cos(2\\pi u)$ (classical Weierstrass function). Building on work by Ledrappier (In Symbolic Dynamics and Its Applications (1992) 285–293), Barański, Bárány and Romanowska (Adv. Math. 265 (2014) 32–59) and Tsujii (Nonlinearity 14 (2001) 1011–1027), we provide an elementary proof that the Hausdorff dimension of $W_{\\lambda,b}$ equals $2+\\frac{\\log\\lambda }{\\log b}$ for all $\\lambda\\in(\\lambda_{b},1)$ with a suitable $\\lambda_{b}<1$. This reproduces results by Barański, Bárány and Romanowska (Adv. Math. 265 (2014) 32–59) without using the dimension theory for hyperbolic measures of Ledrappier and Young (Ann. of Math. (2) 122 (1985) 540–574; Comm. Math. Phys. 117 (1988) 529–548), which is replaced by a simple telescoping argument together with a recursive multi-scale estimate.
科研通智能强力驱动
Strongly Powered by AbleSci AI