Short-time prediction of chaotic laser using time-delayed photonic reservoir computing

混乱的 半导体激光器理论 信号(编程语言) 计算机科学 同步(交流) 激光器 光学 光子学 物理 电信 人工智能 频道(广播) 程序设计语言
作者
Qi Liu,Pu Li,Chao Kai,Chunqiang Hu,Qiang Cai,Jianguo Zhang,Bingjie Xu
出处
期刊:Chinese Physics [Science Press]
卷期号:70 (15): 154209-154209 被引量:2
标识
DOI:10.7498/aps.70.20210355
摘要

<sec>Prediction of chaotic laser has a wide prospect of applications, such as retrieving lost data, providing assists for data analysis, testing data encryption security in cryptography based on chaotic synchronization of lasers. We propose and demonstrate a new method of using time delayed photonic reservoir computing (RC) to forecast the continuous dynamical evolution of chaotic laser from previous measurements. Specifically, the time delayed photonic RC based on semiconductor laser with optical injection and feedback structure is established as a prediction system. Chaotic laser, as input signal, is generated by semiconductor laser with external disturbance.</sec><sec>The time delayed photonic RC used in this stage is a novel implementation, which consists of three parts: the input layer, the reservoir and the output layer. In the input layer, the chaos laser from the semiconductor with an optical feedback needs to preprocess and multiply by a mask signal. The reservoir is the master-slave configuration consisting of a response laser with the optical feedback and light injection. In the feedback loop, there are <i>N</i> virtual nodes at each interval <i>θ</i> with a delay time of <i>τ</i> (<i>N</i> = <i>τ</i>/<i>θ</i>). The reservoir performs the mapping of the input signal onto a high-dimensional state space. In the output layer, the output of the reservoir is a linear combination of the reservoir state and the output weight. The output weight is optimized by minimizing the mean-square error between target value and output value through using the ridge regression algorithm.</sec><sec>The results demonstrate that time delayed photonic RC based on semiconductor laser can forecast the trajectory of chaotic laser in about 2 ns. Moreover, we also investigate the influence of critical parameters on prediction result, including the type of the mask, the quantity of the virtual nodes, the length of the training data, the input gain, the feedback strength, the injection strength, the ridge parameter and the leakage rate.</sec><sec>The method used here in this work has many attractive advantages, such as simple configuration, low training cost and eminently suitable for hardware implementation. Although the prediction length is limited, the significant innovation using time delayed photonic RC based on semiconductor lasers as the prediction system of chaotic laser presents a new opportunity for further developing a technique for predicting chaotic laser. </sec>
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助山茱萸采纳,获得10
5秒前
13280939791完成签到,获得积分20
10秒前
米里迷路完成签到 ,获得积分10
13秒前
小蘑菇应助比巴卜采纳,获得10
16秒前
17秒前
21秒前
22秒前
HOPE发布了新的文献求助200
22秒前
xzy998应助科研通管家采纳,获得10
22秒前
852应助科研通管家采纳,获得10
23秒前
鸣笛应助科研通管家采纳,获得10
23秒前
天天快乐应助科研通管家采纳,获得10
23秒前
鸣笛应助科研通管家采纳,获得10
23秒前
nihao应助科研通管家采纳,获得10
23秒前
23秒前
23秒前
田様应助科研通管家采纳,获得10
23秒前
23秒前
24秒前
yuqiu完成签到,获得积分10
25秒前
苑阿宇发布了新的文献求助10
27秒前
LeungYM发布了新的文献求助10
27秒前
tao完成签到,获得积分10
28秒前
刘颖发布了新的文献求助10
29秒前
脑洞疼应助Nanami_ii采纳,获得10
29秒前
31秒前
骄阳完成签到 ,获得积分10
32秒前
汤疾完成签到,获得积分10
32秒前
tao发布了新的文献求助10
32秒前
liangliang发布了新的文献求助10
35秒前
35秒前
37秒前
wuran发布了新的文献求助10
37秒前
38秒前
YYY完成签到,获得积分10
39秒前
Lucas应助ins采纳,获得10
40秒前
共享精神应助读书的时候采纳,获得10
41秒前
ccc完成签到,获得积分20
41秒前
FashionBoy应助LeungYM采纳,获得30
42秒前
未来可期应助麦克阿宇采纳,获得10
42秒前
高分求助中
【重要!!请各位用户详细阅读此贴】科研通的精品贴汇总(请勿应助) 10000
International Code of Nomenclature for algae, fungi, and plants (Madrid Code) (Regnum Vegetabile) 1000
Semantics for Latin: An Introduction 999
Robot-supported joining of reinforcement textiles with one-sided sewing heads 530
Apiaceae Himalayenses. 2 500
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 490
Tasteful Old Age:The Identity of the Aged Middle-Class, Nursing Home Tours, and Marketized Eldercare in China 350
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4084201
求助须知:如何正确求助?哪些是违规求助? 3623337
关于积分的说明 11494125
捐赠科研通 3337837
什么是DOI,文献DOI怎么找? 1835030
邀请新用户注册赠送积分活动 903677
科研通“疑难数据库(出版商)”最低求助积分说明 821806