Neural marching cubes

行进中的立方体 多边形网格 计算机科学 镶嵌(计算机图形学) 顶点(图论) 立方体(代数) 卷积神经网络 等值面 网络拓扑 三角形网格 人工神经网络 离散化 网格 算法 拓扑(电路) 人工智能 理论计算机科学 可视化 数学 几何学 计算机图形学(图像) 组合数学 操作系统 图形 数学分析
作者
Zhiqin Chen,Hao Zhang
出处
期刊:ACM Transactions on Graphics [Association for Computing Machinery]
卷期号:40 (6): 1-15 被引量:60
标识
DOI:10.1145/3478513.3480518
摘要

We introduce Neural Marching Cubes , a data-driven approach for extracting a triangle mesh from a discretized implicit field. We base our meshing approach on Marching Cubes (MC), due to the simplicity of its input, namely a uniform grid of signed distances or occupancies, which frequently arise in surface reconstruction and from neural implicit models. However, classical MC is defined by coarse tessellation templates isolated to individual cubes. While more refined tessellations have been proposed by several MC variants, they all make heuristic assumptions, such as trilinearity, when determining the vertex positions and local mesh topologies in each cube. In principle, none of these approaches can reconstruct geometric features that reveal coherence or dependencies between nearby cubes (e.g., a sharp edge ), as such information is unaccounted for, resulting in poor estimates of the true underlying implicit field. To tackle these challenges, we re-cast MC from a deep learning perspective, by designing tessellation templates more apt at preserving geometric features, and learning the vertex positions and mesh topologies from training meshes, to account for contextual information from nearby cubes. We develop a compact per-cube parameterization to represent the output triangle mesh, while being compatible with neural processing, so that a simple 3D convolutional network can be employed for the training. We show that all topological cases in each cube that are applicable to our design can be easily derived using our representation, and the resulting tessellations can also be obtained naturally and efficiently by following a few design guidelines. In addition, our network learns local features with limited receptive fields, hence it generalizes well to new shapes and new datasets. We evaluate our neural MC approach by quantitative and qualitative comparisons to all well-known MC variants. In particular, we demonstrate the ability of our network to recover sharp features such as edges and corners, a long-standing issue of MC and its variants. Our network also reconstructs local mesh topologies more accurately than previous approaches. Code and data are available at https://github.com/czq142857/NMC.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助DueDue0327采纳,获得30
刚刚
1秒前
虚拟的面包完成签到,获得积分10
1秒前
neckerzhu完成签到 ,获得积分10
2秒前
2秒前
2秒前
111发布了新的文献求助10
4秒前
zyx发布了新的文献求助10
5秒前
sherry完成签到 ,获得积分10
7秒前
7秒前
Awei发布了新的文献求助10
7秒前
Ava应助不吃芒果采纳,获得10
7秒前
Acid完成签到 ,获得积分10
8秒前
神勇的万怨关注了科研通微信公众号
9秒前
蒸汽波波完成签到,获得积分10
9秒前
简化为完成签到,获得积分10
9秒前
10秒前
传火完成签到,获得积分10
11秒前
温馨完成签到,获得积分10
12秒前
13秒前
文静的可仁完成签到,获得积分10
13秒前
Fsy应助neckerzhu采纳,获得10
14秒前
高挑的果汁完成签到,获得积分10
15秒前
123完成签到 ,获得积分10
16秒前
asaki发布了新的文献求助10
16秒前
aaa完成签到,获得积分10
17秒前
大个应助哈密瓜味可乐采纳,获得10
17秒前
xh发布了新的文献求助10
18秒前
18秒前
屎蛋关注了科研通微信公众号
19秒前
19秒前
杨茗涵完成签到,获得积分10
20秒前
汉堡包应助sunhealth采纳,获得10
21秒前
21秒前
小王发布了新的文献求助10
21秒前
Hzhe完成签到,获得积分10
23秒前
浮游应助陈愿采纳,获得10
23秒前
24秒前
绝不拖延完成签到,获得积分10
24秒前
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
A Modern Guide to the Economics of Crime 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5272436
求助须知:如何正确求助?哪些是违规求助? 4429688
关于积分的说明 13789668
捐赠科研通 4308183
什么是DOI,文献DOI怎么找? 2364041
邀请新用户注册赠送积分活动 1359627
关于科研通互助平台的介绍 1322708