亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An ensemble of neural networks provides expert-level prenatal detection of complex congenital heart disease

医学 心脏病 胎儿超声心动图 置信区间 指南 超声波 心脏病学 产前诊断 胎儿 胎心 内科学 放射科 怀孕 病理 生物 遗传学
作者
Rima Arnaout,Lara Curran,Yili Zhao,Jami C. Levine,Erin Chinn,Anita J. Moon‐Grady
出处
期刊:Nature Medicine [Springer Nature]
卷期号:27 (5): 882-891 被引量:233
标识
DOI:10.1038/s41591-021-01342-5
摘要

Congenital heart disease (CHD) is the most common birth defect. Fetal screening ultrasound provides five views of the heart that together can detect 90% of complex CHD, but in practice, sensitivity is as low as 30%. Here, using 107,823 images from 1,326 retrospective echocardiograms and screening ultrasounds from 18- to 24-week fetuses, we trained an ensemble of neural networks to identify recommended cardiac views and distinguish between normal hearts and complex CHD. We also used segmentation models to calculate standard fetal cardiothoracic measurements. In an internal test set of 4,108 fetal surveys (0.9% CHD, >4.4 million images), the model achieved an area under the curve (AUC) of 0.99, 95% sensitivity (95% confidence interval (CI), 84–99%), 96% specificity (95% CI, 95–97%) and 100% negative predictive value in distinguishing normal from abnormal hearts. Model sensitivity was comparable to that of clinicians and remained robust on outside-hospital and lower-quality images. The model’s decisions were based on clinically relevant features. Cardiac measurements correlated with reported measures for normal and abnormal hearts. Applied to guideline-recommended imaging, ensemble learning models could significantly improve detection of fetal CHD, a critical and global diagnostic challenge. Deep learning can facilitate identification of congenital heart disease from fetal ultrasound screening, a diagnosis that in clinical practice is often missed.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
立夏完成签到,获得积分10
2秒前
今后应助盒子采纳,获得10
2秒前
Perry完成签到,获得积分0
11秒前
星辰大海应助钱都来采纳,获得10
12秒前
15秒前
盒子发布了新的文献求助10
18秒前
24秒前
fx完成签到 ,获得积分10
28秒前
钱都来发布了新的文献求助10
29秒前
舒展完成签到,获得积分10
29秒前
zhiren完成签到 ,获得积分10
29秒前
绮烟完成签到 ,获得积分10
31秒前
又声完成签到,获得积分10
31秒前
百事可乐完成签到 ,获得积分10
32秒前
盒子完成签到,获得积分10
32秒前
34秒前
KY2022完成签到,获得积分10
37秒前
rita4616发布了新的文献求助10
37秒前
Hillson完成签到,获得积分10
37秒前
dyw发布了新的文献求助10
45秒前
Ghiocel完成签到,获得积分10
52秒前
sonder完成签到,获得积分10
53秒前
夏夏关注了科研通微信公众号
55秒前
1分钟前
riccixuu完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
jackone完成签到,获得积分10
1分钟前
番茄酱完成签到,获得积分10
1分钟前
夏夏发布了新的文献求助30
1分钟前
显灵鸡屎果完成签到,获得积分10
1分钟前
科研通AI6应助番茄酱采纳,获得10
1分钟前
桐桐应助聪慧鸡翅采纳,获得10
1分钟前
1分钟前
ataybabdallah完成签到,获得积分10
1分钟前
dyw完成签到,获得积分20
1分钟前
xiaom发布了新的文献求助10
1分钟前
TwentyNine完成签到,获得积分10
1分钟前
gapper完成签到 ,获得积分10
1分钟前
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549005
求助须知:如何正确求助?哪些是违规求助? 4634424
关于积分的说明 14634535
捐赠科研通 4575773
什么是DOI,文献DOI怎么找? 2509289
邀请新用户注册赠送积分活动 1485264
关于科研通互助平台的介绍 1456366