A Prediction Model for Para-Aortic Lymph Node Metastasis in Cervical Cancer by Radiomics Analysis Using Pre-Treatment MRI Images of the Primary Tumor

医学 无线电技术 宫颈癌 磁共振成像 淋巴结 放射科 转移 Lasso(编程语言) 放射治疗 接收机工作特性 核医学 癌症 内科学 计算机科学 万维网
作者
Ikuno Nishibuchi,Daisuke Kawahara,Masatoshi Kawamura,Katsumaro Kubo,Nobuki Imano,Yuki Takeuchi,A. Saito,Yoshiaki Murakami,Y. Nagata
出处
期刊:International Journal of Radiation Oncology Biology Physics [Elsevier BV]
卷期号:111 (3): e618-e618 被引量:2
标识
DOI:10.1016/j.ijrobp.2021.07.1646
摘要

Whole pelvis irradiation (WPI) is the standard radiation technique for locally advanced cervical cancer without para-aortic lymph node (PALN) metastasis. PALN is one of the most common late failure sites in patients treated with WPI. Although there are several reports about the utility of prophylactic extended-field irradiation (EFI), it is still controversial which patients benefit from prophylactic EFI. If we could predict a PALN metastasis from pre-treatment imaging data, it might help patients to select prophylactic EFI. This study aimed to construct a predictive model for the PALN metastasis in patients with cervical cancer by radiomics analysis using pretreatment magnetic resonance imaging (MRI) of the primary tumor.Data of 94 patients with cervical squamous cell carcinoma who underwent radiotherapy between 2003/10 and 2018/2 were split into two sets: 66 patients for the training/validation and 28 patients for testing. The PALN status was classified into two groups (positive or negative). Both the synchronous and metachronous PALN metastasis was classified as PALN positive. A total number of 9394 radiomics features per a patient image were extracted from T1- and T2-weighted MRI images. The set of candidate predictors were selected with the least absolute shrinkage and selection operator (LASSO) logistic regression and build predictive models with neural network classifiers were used. The precision, accuracy, and sensitivity by generating confusion matrices and the areas under the receiver operating characteristic curve (AUC) for each model were evaluated.By the LASSO analysis of the training/validation data, we found 9 radiomics features from T1-weighted MRI image and 61 radiomics features from T2-weighted MRI image for the classification. The accuracy, specificity, sensitivity, and AUC of the prediction model for the dataset in testing group were 67.9 %, 91.0%, 10.0%, and 0.60 with T1-weighted MRI image, 95.7%, 97.0%, 92.5%, and 0.98 with T2-weighted MRI image, 96.4%, 99.0%, 90.7%, and 0.99 with the combination of T1 and T2-weighted MRI images, respectively.We constructed a model to predict the PALN metastasis in patients with cervical cancer using pre-treatment MRI image-based radiomics and machine learning. The model based on T2-weighted image or combination of T1 and T2-wighted MRI image showed promising prediction accuracy. This model may be useful to select patients who benefit from prophylactic EFI.I. Nishibuchi: None. D. Kawahara: None. M. Kawamura: None. K. Kubo: None. N. Imano: None. Y. Takeuchi: None. A. Saito: None. Y. Murakami: None. Y. Nagata: None.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xiaohuhuan完成签到,获得积分10
刚刚
浅小言完成签到 ,获得积分10
1秒前
yygz0703完成签到 ,获得积分10
2秒前
Yxian完成签到,获得积分10
3秒前
4秒前
Lawrence完成签到,获得积分10
4秒前
5秒前
5秒前
5秒前
愉快书琴完成签到,获得积分10
6秒前
钱多多完成签到,获得积分10
7秒前
8秒前
cx发布了新的文献求助10
9秒前
飘逸的吐司完成签到,获得积分20
9秒前
小华发布了新的文献求助10
10秒前
10秒前
10秒前
一株多肉完成签到,获得积分10
10秒前
温梦花雨完成签到 ,获得积分10
10秒前
11秒前
我是科研小能手完成签到,获得积分10
12秒前
12秒前
lielie发布了新的文献求助10
12秒前
852应助冬冬林采纳,获得10
13秒前
zyx完成签到 ,获得积分10
13秒前
15秒前
15秒前
积极的逍遥完成签到,获得积分10
15秒前
16秒前
17秒前
小费发布了新的文献求助30
20秒前
20秒前
云_123发布了新的文献求助10
21秒前
SHY发布了新的文献求助50
22秒前
小华完成签到,获得积分10
23秒前
沉默靳完成签到,获得积分10
25秒前
思源应助干净寄翠采纳,获得10
29秒前
小刘哥加油完成签到 ,获得积分10
32秒前
小华关注了科研通微信公众号
33秒前
乐乐应助aa采纳,获得10
33秒前
高分求助中
Mass producing individuality 600
Разработка метода ускоренного контроля качества электрохромных устройств 500
A Combined Chronic Toxicity and Carcinogenicity Study of ε-Polylysine in the Rat 400
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Treatise on Process Metallurgy Volume 3: Industrial Processes (2nd edition) 250
Progress in Inorganic Chemistry 200
Between east and west transposition of cultural systems and military technology of fortified landscapes 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3825763
求助须知:如何正确求助?哪些是违规求助? 3367969
关于积分的说明 10448566
捐赠科研通 3087423
什么是DOI,文献DOI怎么找? 1698676
邀请新用户注册赠送积分活动 816871
科研通“疑难数据库(出版商)”最低求助积分说明 769973