太赫兹辐射
多物理
材料科学
光电子学
光电流
物理
有限元法
热力学
作者
Jose Santos Batista,Hugh Churchill,Magda El-Shenawee
出处
期刊:Journal of The Optical Society of America B-optical Physics
[Optica Publishing Group]
日期:2021-03-31
卷期号:38 (4): 1367-1367
被引量:8
摘要
This paper presents a 3D model of a terahertz photoconductive antenna (PCA) using black phosphorus, an emerging 2D anisotropic material, as the semiconductor layer. This work aims at understanding the potential of black phosphorus (BP) to advance the signal generation and bandwidth of conventional terahertz (THz) PCAs. The COMSOL Multiphysics package, based on the finite element method, is utilized to model the 3D BP PCA emitter using four modules: the frequency domain RF module to solve Maxwell’s equations, the semiconductor module to calculate the photocurrent, the heat transfer in solids module to calculate the temperature variations, and the transient RF module to calculate the THz radiated electric field pulse. The proposed 3D model is computationally intensive where the PCA device includes thin layers of thicknesses ranging from nano- to microscale. The symmetry of the configuration was exploited by applying the perfect electric and magnetic boundary conditions to reduce the computational domain to only one quarter of the device in the RF module. The results showed that the temperature variation due to the conduction of current induced by the bias voltage increased by only 0.162 K. In addition, the electromagnetic power dissipation in the semiconductor due to the femtosecond laser source showed an increase in temperature by 0.441 K. The results show that the temperature variations caused the peak of the photocurrent to increase by ∼ 3.4 % and ∼ 10 % , respectively, under a maximum bias voltage of 1 V and average laser power of 1 mW. While simulating the active area of the antenna provided accurate results for the optical and semiconductor responses, simulating the thermal effect on the photocurrent requires a larger computational domain to avoid false rise in temperature. Finally, the simulated THz signal generation electric field pulse exhibits a trend in increasing the bandwidth of the proposed BP PCA compared with the measured pulse of a reference commercial LT-GaAs PCA. Enhancing signal generation and bandwidth will improve THz imaging and spectroscopy for biomedical and material characterization applications.
科研通智能强力驱动
Strongly Powered by AbleSci AI