Development and validation of a preoperative CT-based radiomic nomogram to predict pathology invasiveness in patients with a solitary pulmonary nodule: a machine learning approach, multicenter, diagnostic study

列线图 医学 肺孤立结节 放射科 神经组阅片室 无线电技术 接收机工作特性 结核(地质) 逻辑回归 曲线下面积 超声波 一致性 试验预测值 核医学 计算机断层摄影术
作者
Luyu Huang,Weihuan Lin,Daipeng Xie,Yunfang Yu,Hanbo Cao,Guoqing Liao,Shaowei Wu,Lintong Yao,Zhaoyu Wang,Mei Wang,Siyun Wang,Guangyi Wang,Dongkun Zhang,Su Yao,Zifan He,William C. Cho,Duo Chen,Zhengjie Zhang,Wanshan Li,Guibin Qiao,Lawrence W. C. Chan,Haiyu Zhou
出处
期刊:European Radiology [Springer Science+Business Media]
卷期号:32 (3): 1983-1996 被引量:2
标识
DOI:10.1007/s00330-021-08268-z
摘要

Abstract Objectives To develop and validate a preoperative CT-based nomogram combined with radiomic and clinical–radiological signatures to distinguish preinvasive lesions from pulmonary invasive lesions. Methods This was a retrospective, diagnostic study conducted from August 1, 2018, to May 1, 2020, at three centers. Patients with a solitary pulmonary nodule were enrolled in the GDPH center and were divided into two groups (7:3) randomly: development ( n = 149) and internal validation ( n = 54). The SYSMH center and the ZSLC Center formed an external validation cohort of 170 patients. The least absolute shrinkage and selection operator (LASSO) algorithm and logistic regression analysis were used to feature signatures and transform them into models. Results The study comprised 373 individuals from three independent centers (female: 225/373, 60.3%; median [IQR] age, 57.0 [48.0–65.0] years). The AUCs for the combined radiomic signature selected from the nodular area and the perinodular area were 0.93, 0.91, and 0.90 in the three cohorts. The nomogram combining the clinical and combined radiomic signatures could accurately predict interstitial invasion in patients with a solitary pulmonary nodule (AUC, 0.94, 0.90, 0.92) in the three cohorts, respectively. The radiomic nomogram outperformed any clinical or radiomic signature in terms of clinical predictive abilities, according to a decision curve analysis and the Akaike information criteria. Conclusions This study demonstrated that a nomogram constructed by identified clinical–radiological signatures and combined radiomic signatures has the potential to precisely predict pathology invasiveness. Key Points • The radiomic signature from the perinodular area has the potential to predict pathology invasiveness of the solitary pulmonary nodule. • The new radiomic nomogram was useful in clinical decision-making associated with personalized surgical intervention and therapeutic regimen selection in patients with early-stage non-small-cell lung cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
babalababa关注了科研通微信公众号
刚刚
Ava应助dzll采纳,获得10
2秒前
6秒前
李健的小迷弟应助dengy采纳,获得10
7秒前
NexusExplorer应助dw平如淡菊采纳,获得10
7秒前
所所应助科研通管家采纳,获得10
7秒前
一一应助科研通管家采纳,获得10
7秒前
一一应助科研通管家采纳,获得10
7秒前
奥利奥完成签到,获得积分10
7秒前
一一应助科研通管家采纳,获得10
7秒前
wanci应助科研通管家采纳,获得10
8秒前
一一应助科研通管家采纳,获得10
8秒前
8秒前
9秒前
10秒前
12秒前
华仔应助跳跃念寒采纳,获得10
12秒前
13秒前
13秒前
yaoxm完成签到,获得积分10
14秒前
Lucas应助研友_LNoDrn采纳,获得10
14秒前
舒心远侵完成签到,获得积分10
14秒前
小马甲应助无语的水云采纳,获得10
15秒前
16秒前
挽风发布了新的文献求助10
16秒前
ZZZ发布了新的文献求助10
16秒前
dzll发布了新的文献求助10
16秒前
Pursuit发布了新的文献求助10
17秒前
xiaoxiao发布了新的文献求助10
18秒前
dengy发布了新的文献求助10
19秒前
19秒前
打打应助云之上采纳,获得10
20秒前
笋尖266发布了新的文献求助10
21秒前
21秒前
香蕉觅云应助Naza1119采纳,获得10
23秒前
扭扭车发布了新的文献求助10
24秒前
二维世界的鱼完成签到,获得积分10
24秒前
24秒前
26秒前
Jackson完成签到,获得积分10
27秒前
高分求助中
Worked Bone, Antler, Ivory, and Keratinous Materials 1000
Mass producing individuality 600
Algorithmic Mathematics in Machine Learning 500
Разработка метода ускоренного контроля качества электрохромных устройств 500
Getting Published in SSCI Journals: 200+ Questions and Answers for Absolute Beginners 300
Advances in Underwater Acoustics, Structural Acoustics, and Computational Methodologies 300
Limes XXIII Sonderband 4 / II Proceedings of the 23rd International Congress of Roman Frontier Studies Ingolstadt 2015 200
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3829407
求助须知:如何正确求助?哪些是违规求助? 3372039
关于积分的说明 10470425
捐赠科研通 3091592
什么是DOI,文献DOI怎么找? 1701274
邀请新用户注册赠送积分活动 818330
科研通“疑难数据库(出版商)”最低求助积分说明 770830