已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Combining Optimized SAR-SIFT Features and RD Model for Multisource SAR Image Registration

合成孔径雷达 计算机科学 人工智能 像素 散斑噪声 计算机视觉 斑点图案 几何变换 尺度不变特征变换 图像配准 模式识别(心理学) 特征提取 特征(语言学) 图像(数学) 语言学 哲学
作者
Mengmeng Wang,Jixian Zhang,Kazhong Deng,Fenfen Hua
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:60: 1-16 被引量:18
标识
DOI:10.1109/tgrs.2021.3074630
摘要

Multisource synthetic aperture radar (SAR) image registration is a difficult task in remote sensing due to the influence of speckle noise and geometric distortions between the images. The SAR scale-invariant feature transform (SAR-SIFT) is a prior option to extract features for automatic registration of SAR images. However, most registration methods based on the SAR-SIFT operator only use the image information (the geometric distribution of the pixels making up the feature) and do not consider the influences of the side-looking imagery mode and the topographic relief. In this article, we propose a novel registration method to address the above problems, which combines the optimized SAR-SIFT features and the imaging geometry of the SAR system. The major improvement of the algorithm is the use of the range–Doppler (RD) model in feature matching and geometric transformation estimation. A new local matching method aided by the RD model, transforming the global matching mode to the local one, is first introduced to avoid the gross errors and improve the matching efficiency. Then, an RD-model-based geometric transformation model is presented for multisource SAR images with obvious geometric distortions. In addition, the stationary wavelet transform (SWT) is brought in the feature extraction to optimize the SAR-SIFT keypoints to extract reliable and uniformed features. The experimental results fully demonstrate the applicability of the proposed method for registration of multisource SAR images in different acquiring configurations, especially with different passes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dsn发布了新的文献求助10
刚刚
布丁完成签到 ,获得积分0
1秒前
1秒前
3秒前
领导范儿应助欢欢采纳,获得10
5秒前
棉花糖完成签到,获得积分10
5秒前
heyaoe发布了新的文献求助10
6秒前
英俊的铭应助远志采纳,获得10
6秒前
华仔应助落寞的代芙采纳,获得10
8秒前
liyuanli发布了新的文献求助10
8秒前
serena完成签到,获得积分10
9秒前
dsn完成签到,获得积分20
9秒前
10秒前
11秒前
科研通AI5应助科研通管家采纳,获得10
11秒前
赘婿应助科研通管家采纳,获得10
11秒前
搜集达人应助科研通管家采纳,获得10
12秒前
Lucas应助科研通管家采纳,获得10
12秒前
华仔应助科研通管家采纳,获得30
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
苯环发布了新的文献求助10
17秒前
realssr应助差劲先森采纳,获得10
18秒前
20秒前
xxiix发布了新的文献求助10
21秒前
超级驼鹿发布了新的文献求助30
22秒前
22秒前
于雷是我完成签到,获得积分10
23秒前
24秒前
冷艳哈密瓜完成签到 ,获得积分10
25秒前
xxiix完成签到,获得积分10
29秒前
29秒前
30秒前
脑洞疼应助liyuanli采纳,获得10
31秒前
huhaha完成签到,获得积分10
33秒前
www发布了新的文献求助10
34秒前
笙笙发布了新的文献求助10
35秒前
michaelvin完成签到,获得积分10
35秒前
37秒前
锅子完成签到,获得积分20
37秒前
高分求助中
Les Mantodea de Guyane Insecta, Polyneoptera 2500
Mobilization, center-periphery structures and nation-building 600
Introduction to Strong Mixing Conditions Volumes 1-3 500
Technologies supporting mass customization of apparel: A pilot project 450
China—Art—Modernity: A Critical Introduction to Chinese Visual Expression from the Beginning of the Twentieth Century to the Present Day 430
Multichannel rotary joints-How they work 400
Tip60 complex regulates eggshell formation and oviposition in the white-backed planthopper, providing effective targets for pest control 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3795398
求助须知:如何正确求助?哪些是违规求助? 3340392
关于积分的说明 10300052
捐赠科研通 3056907
什么是DOI,文献DOI怎么找? 1677307
邀请新用户注册赠送积分活动 805375
科研通“疑难数据库(出版商)”最低求助积分说明 762483